結果
| 問題 |
No.1704 Many Bus Stops (easy)
|
| コンテスト | |
| ユーザー |
moririn2528_c
|
| 提出日時 | 2021-10-08 22:40:13 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 59 ms / 2,000 ms |
| コード長 | 13,518 bytes |
| コンパイル時間 | 1,570 ms |
| コンパイル使用メモリ | 119,468 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-23 05:43:58 |
| 合計ジャッジ時間 | 4,400 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 41 |
ソースコード
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<vector>
#include<cmath>
#include<algorithm>
#include<map>
#include<queue>
#include<deque>
#include<iomanip>
#include<tuple>
#include<cassert>
#include<set>
#include<complex>
#include<numeric>
#include<functional>
#include<unordered_map>
#include<unordered_set>
using namespace std;
typedef long long int LL;
typedef pair<int,int> P;
typedef pair<LL,LL> LP;
const int INF=1<<30;
const LL MAX=1e9+7;
void array_show(int *array,int array_n,char middle=' '){
for(int i=0;i<array_n;i++)printf("%d%c",array[i],(i!=array_n-1?middle:'\n'));
}
void array_show(LL *array,int array_n,char middle=' '){
for(int i=0;i<array_n;i++)printf("%lld%c",array[i],(i!=array_n-1?middle:'\n'));
}
void array_show(vector<int> &vec_s,int vec_n=-1,char middle=' '){
if(vec_n==-1)vec_n=vec_s.size();
for(int i=0;i<vec_n;i++)printf("%d%c",vec_s[i],(i!=vec_n-1?middle:'\n'));
}
void array_show(vector<LL> &vec_s,int vec_n=-1,char middle=' '){
if(vec_n==-1)vec_n=vec_s.size();
for(int i=0;i<vec_n;i++)printf("%lld%c",vec_s[i],(i!=vec_n-1?middle:'\n'));
}
template<typename T> ostream& operator<<(ostream& os,const vector<T>& v1){
int n=v1.size();
for(int i=0;i<n;i++){
if(i)os<<" ";
os<<v1[i];
}
return os;
}
template<typename T1,typename T2> ostream& operator<<(ostream& os,const pair<T1,T2>& p){
os<<p.first<<" "<<p.second;
return os;
}
template<typename T> istream& operator>>(istream& is,vector<T>& v1){
int n=v1.size();
for(int i=0;i<n;i++)is>>v1[i];
return is;
}
template<typename T1,typename T2> istream& operator>>(istream& is,pair<T1,T2>& p){
is>>p.first>>p.second;
return is;
}
template<typename T>T ext_gcd(T a,T b,T& x,T& y){
//ax+by=gcd(a,b)
if(a<b)return ext_gcd(b,a,y,x);
if(b==0){
x=1,y=0;
return a;
}
T gcd_val=ext_gcd(b,a%b,x,y);
swap(x,y);
y-=x*(a/b);
if(x>b)y+=(x/b)*a,x%=b;
if(y>a)x+=(y/a)*b,y%=a;
return gcd_val;
}
template<long long int mod,bool prime=false>class modint{
private:
typedef long long int ll;
ll val;
ll gcd(ll a,ll b){
if(a<b)swap(a,b);
if(b==0)return a;
return gcd(b,a%b);
}
public:
modint():val(0){}
template<class T>modint(T a){
val=(ll)a%mod;
if(val<0)val+=mod;
}
ll value()const{return val;}
ll get_mod()const{return mod;}
modint& operator++(){
val++;
if(val==mod)val=0;
return *this;
}
modint operator++(int){
modint ans=*this;
++*this;
return ans;
}
modint& operator--(){
if(val==0)val=mod;
val--;
return *this;
}
modint operator--(int){
modint ans=*this;
--*this;
return ans;
}
modint& operator+=(const modint& a){
val+=a.value();
if(val>=mod)val-=mod;
return *this;
}
modint& operator-=(const modint& a){
val-=a.value();
if(val<0)val+=mod;
return *this;
}
modint& operator*=(const modint& a){
val*=a.value();
if(val>=mod)val%=mod;
return *this;
}
modint pow(ll index)const{
assert(index>=0);
if(prime && index>=mod-1)index%=mod-1;
modint a=*this,ans=1;
for(ll i=1;i>=0 && i<=index;i<<=1){
if(index&i)ans*=a;
a*=a;
}
return ans;
}
modint inverse()const{
if(prime){
assert(val!=0);
return pow(mod-2);
}
ll x,y;
ll g=ext_gcd<ll>(val,mod,x,y);
assert(g==1);
return x;
}
modint& operator/=(const modint& a){
if(prime){
*this=(*this)*a.inverse();
return *this;
}
ll g=gcd(val,a.value());
modint a2=a.value()/g;
val/=g;
*this=(*this)*a2.inverse();
return *this;
}
friend modint operator-(const modint& a,const modint& b){return (modint)a-=b;}
friend modint operator+(const modint& a,const modint& b){return (modint)a+=b;}
friend modint operator*(const modint& a,const modint& b){return (modint)a*=b;}
friend modint operator/(const modint& a,const modint& b){return (modint)a/=b;}
friend bool operator==(const modint& a,const modint& b){return a.value()==b.value();}
friend bool operator!=(const modint& a,const modint& b){return a.value()!=b.value();}
friend modint pow(const modint& a,const ll b){return a.pow(b);}
modint operator+() const{return *this;}
modint operator-() const{return modint()-*this;}
friend ostream& operator<<(ostream& os,const modint& a){
os<<a.value();
return os;
}
friend istream& operator>>(istream& is,modint& a){
ll val;
is>>val;
a=val;
return is;
}
};
using mint=modint<1'000'000'007,true>;
using modint109=modint<1'000'000'009,true>;
using modint998=modint<998'244'353,true>;
template<typename T> class Matrix{
private:
typedef long long int ll;
T zero=0,e=1;
vector<vector<T>> vec_matrix;
void init(int n,int m);
function<bool(T,T)> same=[](T a,T b){return a==b;};
//function<bool(T,T)> same=[](T a,T b){return (a-b)<=1e-9;};
Matrix gauss_and_inverse(int mode)const;
public:
Matrix(int n);
Matrix(int n,int m);
Matrix(vector<vector<T>>& ma);
int sizeX() const;
int sizeY() const;
bool valid() const;
T& element(int a,int b);
const vector<vector<T>>& get_vec()const;
void set_same_function(function<bool(T,T)> _same){same=_same;}
void E();
void E(int n);
Matrix& operator += (const Matrix& mat_a);
Matrix& operator -= (const Matrix& mat_a);
Matrix& operator *= (const Matrix& mat_a);
friend Matrix operator +(const Matrix& mat_a,const Matrix& mat_b){return (Matrix)mat_a+=mat_b;}
friend Matrix operator -(const Matrix& mat_a,const Matrix& mat_b){return (Matrix)mat_a-=mat_b;}
friend Matrix operator *(const Matrix& mat_a,const Matrix& mat_b){return (Matrix)mat_a*=mat_b;}
Matrix operator+() const{return *this;}
Matrix operator-() const{return Matrix()-*this;}
Matrix& operator %= (const T mod);
Matrix pow_mod(ll m,ll mod=1e9+7)const;
Matrix pow(ll m)const;
T tr()const;
Matrix gauss()const;
T det()const;
Matrix inverse()const;
Matrix submatrix(int a,int b,int c,int d)const;//[a,c)*[b,d)
};
template<typename T> void Matrix<T>::init(int n,int m){
vec_matrix.assign(n,vector<T>(m,zero));
}
template<typename T> bool Matrix<T>::valid() const{
int n=sizeX(),m=sizeY();
for(int i=0;i<n;i++){
if((int)vec_matrix[i].size()!=m)return false;
}
return true;
}
template<typename T> Matrix<T>::Matrix(int n){
init(n,n);
}
template<typename T> Matrix<T>::Matrix(int n,int m){
init(n,m);
}
template<typename T> Matrix<T>::Matrix(vector<vector<T>>& ma):vec_matrix(ma){
assert(valid());
};
template<typename T> int Matrix<T>::sizeX() const{
return vec_matrix.size();
}
template<typename T> int Matrix<T>::sizeY() const{
if(vec_matrix.empty())return 0;
return vec_matrix[0].size();
}
template<typename T> void Matrix<T>::E(){
assert(sizeX()==sizeY());
int n=sizeX();
int i,j;
for(i=0;i<n;i++){
for(j=0;j<n;j++){
vec_matrix[i][j]=(i==j)?e:zero;
}
}
}
template<typename T> void Matrix<T>::E(int n){
init(n,n);
E();
}
template<typename T> Matrix<T>& Matrix<T>::operator += (const Matrix<T>& mat){
const vector<vector<T>>& vec_mat=mat.get_vec;
assert(sizeX()==mat.sizeX() && sizeY()==mat.sizeY());
int i,j;
int n=sizeX(),m=sizeY();
for(i=0;i<n;i++){
for(j=0;j<m;j++){
vec_matrix[i][j]+=vec_mat[i][j];
}
}
return *this;
}
template<typename T> Matrix<T>& Matrix<T>::operator -= (const Matrix<T>& mat){
const vector<vector<T>>& vec_mat=mat.get_vec;
assert(sizeX()==mat.sizeX() && sizeY()==mat.sizeY());
int i,j;
int n=sizeX(),m=sizeY();
for(i=0;i<n;i++){
for(j=0;j<m;j++){
vec_matrix[i][j]-=vec_mat[i][j];
}
}
return *this;
}
template<typename T> Matrix<T>& Matrix<T>::operator *= (const Matrix<T>& mat){
const vector<vector<T>>& vec_mat=mat.get_vec();
assert(mat.sizeX()==sizeY());
int i,j,k;
int n=sizeX(),m=mat.sizeY(),p=sizeY();
vector<vector<T>> vec_mats(n,vector<T>(m,zero));
for(i=0;i<n;i++){
for(k=0;k<p;k++){
for(j=0;j<m;j++){
vec_mats[i][j]+=vec_matrix[i][k]*vec_mat[k][j];
}
}
}
vec_matrix=vec_mats;
return *this;
}
template<typename T> Matrix<T>& Matrix<T>::operator %= (const T mod){
for(auto& vm:vec_matrix){
for(auto& num:vm){
if(num>=mod)num%=mod;
}
}
return *this;
}
template<typename T> vector<T> operator *(const Matrix<T>& mat,const vector<T>& v1){
const vector<vector<T>>& vec_mat=mat.get_vec();
assert(!vec_mat.empty() && vec_mat[0].size()==v1.size());
int n=vec_mat.size(),m=vec_mat[0].size();
vector<T> vs(n);
int i,j;
for(i=0;i<n;i++){
for(j=0;j<m;j++){
vs[i]+=vec_mat[i][j]*v1[j];
}
}
return vs;
}
template<typename T> istream& operator >> (istream& is,Matrix<T>& a){
assert(a.valid());
int n=a.sizeX(),m=a.sizeY();
int i,j;
for(i=0;i<n;i++){
for(j=0;j<m;j++){
is>>a.element(i,j);
}
}
return is;
}
template<typename T> ostream& operator << (ostream& os,Matrix<T>& a){
assert(a.valid());
int n=a.sizeX(),m=a.sizeY();
int i,j;
for(i=0;i<n;i++){
for(j=0;j<m;j++){
if(j)cout<<" ";
os<<a.element(i,j);
}
os<<endl;
}
return os;
}
template<typename T> Matrix<T> Matrix<T>::pow_mod(ll m,ll mod)const{
assert(sizeX()==sizeY());
ll p_b=1;
Matrix<T> ms(sizeX());
ms.E();
for(;p_b<=m;p_b<<=1);
for(p_b>>=1;p_b>0;p_b>>=1){
ms*=ms;
ms%=mod;
if(m&p_b)ms*=(*this);
ms%=mod;
}
return ms;
}
template<typename T> Matrix<T> Matrix<T>::pow(ll m)const{
assert(sizeX()==sizeY());
Matrix<T> ms(sizeX()),ma=*this;
ms.E();
for(int i=0;(1LL<<i)<=m;i++){
if(m&1LL<<i)ms*=ma;
ma*=ma;
}
return ms;
}
template<typename T> T& Matrix<T>::element(int a,int b){
assert(0<=a && a<sizeX() && 0<=b && b<sizeY());
return vec_matrix[a][b];
}
template<typename T> const vector<vector<T>>& Matrix<T>::get_vec() const{
return vec_matrix;
}
template<typename T> T Matrix<T>::tr()const{
assert(sizeX()==sizeY());
int n=sizeX();
T a=e;
for(int i=0;i<n;i++){
a*=vec_matrix[i][i];
}
return a;
}
template<typename T> Matrix<T> Matrix<T>::gauss_and_inverse(int mode)const{
//mode: 0: gauss triangle, 1: inverse
int n=sizeX(),m=sizeY();
int i,j,k,l;
vector<vector<T>> v=vec_matrix,inv(n,vector<T>(m));
if(mode==1){
assert(n==m);
for(i=0;i<min(n,m);i++)inv[i][i]=e;
}
for(i=0,j=0;i<m;i++){
for(k=j;k<n;k++){
if(!same(v[k][i],zero))break;
}
if(k==n)continue;
if(j<k){
//swap j_th and k_th row
for(l=0;l<m;l++){
swap(v[j][l],v[k][l]);
if(mode==1)swap(inv[j][l],inv[k][l]);
}
}
for(k=j+1;k<n;k++){
T a=v[k][i]/v[j][i];
if(a==zero)continue;
for(l=i+1;l<m;l++)v[k][l]-=v[j][l]*a;
v[k][i]=zero;
if(mode==1){
for(l=0;l<m;l++)inv[k][l]-=inv[j][l]*a;
}
}
j++;
}
if(mode==0)return Matrix(v);
//fix inverse
for(i=n-1;i>=0;i--){
if(v[i][i]==zero)assert(false);
for(j=0;j<i;j++){
T a=v[j][i]/v[i][i];
if(a==zero)continue;
for(k=0;k<m;k++){
inv[j][k]-=inv[i][k]*a;
}
}
for(k=0;k<m;k++){
inv[i][k]/=v[i][i];
}
}
return Matrix(inv);
}
template<typename T> Matrix<T> Matrix<T>::gauss()const{
return gauss_and_inverse(0);
}
template<typename T> T Matrix<T>::det()const{
assert(sizeX()==sizeY());
Matrix a=gauss();
T s=e;
for(int i=0;i<sizeX();i++){
s*=a.element(i,i);
}
return s;
}
template<typename T> Matrix<T> Matrix<T>::inverse()const{
return gauss_and_inverse(1);
}
template<typename T> Matrix<T> Matrix<T>::submatrix(int a,int b,int c,int d)const{
//[a,c)*[b,d)
assert(0<=a && a<c && c<=sizeX());
assert(0<=b && b<d && d<=sizeY());
Matrix<T> s(c-a,d-b);
int i,j;
for(i=0;i<c-a;i++){
for(j=0;j<d-b;j++){
s.element(i,j)=vec_matrix[a+i][b+j];
}
}
return s;
}
namespace sol{
void solve(){
int n,m,p;
int i,j,k;
int a,b,c;
cin>>n;
p=3,m=1;
Matrix<mint> ma(4);
ma.element(0,0)=(mint)1/p;
ma.element(2,0)=(mint)(p-2)/p;
ma.element(3,0)=(mint)1/p;
ma.element(1,1)=(mint)1/p;
ma.element(2,1)=(mint)(p-1)/p;
ma.element(0,2)=1;
ma.element(1,3)=1;
ma=ma.pow(n);
mint m1=1-ma.element(1,1);
cout<<1-m1.pow(m)<<endl;
}
}
int main(){
cin.tie(0);
ios::sync_with_stdio(false);
int n,i;
cin>>n;
for(i=0;i<n;i++){
sol::solve();
}
}
moririn2528_c