結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | popofy |
提出日時 | 2021-10-08 22:44:01 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 388 ms / 9,973 ms |
コード長 | 4,187 bytes |
コンパイル時間 | 2,079 ms |
コンパイル使用メモリ | 205,952 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-16 23:40:50 |
合計ジャッジ時間 | 3,595 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 2 ms
5,248 KB |
testcase_03 | AC | 2 ms
5,248 KB |
testcase_04 | AC | 196 ms
5,248 KB |
testcase_05 | AC | 192 ms
5,248 KB |
testcase_06 | AC | 55 ms
5,248 KB |
testcase_07 | AC | 55 ms
5,248 KB |
testcase_08 | AC | 54 ms
5,248 KB |
testcase_09 | AC | 388 ms
5,248 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (decltype(n) i = 0, i##_len = (n); i < i##_len; ++i) #define reps(i, n) for (decltype(n) i = 1, i##_len = (n); i <= i##_len; ++i) #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define sz(x) ((int)(x).size()) #define yes(s) cout << ((s)?"Yes":"No") << "\n"; #define bit(n) (1LL << ((int)(n))) #define dump(...) cerr << " " << string(#__VA_ARGS__) << ": " << "[" << to_string(__LINE__) << ":" << __FUNCTION__ << "]" << endl << " ", dump_func(__VA_ARGS__) template<class T> using V = vector<T>; template<class T> ostream &operator<<(ostream &os, const vector<T> &vec) {if (vec.empty()) return os << "{}";stringstream ss;os << "{";for (auto e : vec) ss << "," << e;os << ss.str().substr(1) << "}";return os;} void dump_func(){cerr << endl;} template <class Head, class... Tail> void dump_func(Head &&head, Tail &&...tail){cerr << head;if (sizeof...(Tail) > 0) cerr << ", ";dump_func(std::move(tail)...);} template<class T> istream &operator>>(istream &is, complex<T> &v) {T x, y; is >> x >> y; v.real(x); v.imag(y); return is;} template<class T> istream &operator>>(istream &is, V<T> &v) {for (auto&& e : v) is >> e;return is;} template<class T, class U> istream &operator>>(istream &is, pair<T, U> &v) {is >> v.first >> v.second;return is;} template<class T, size_t n> istream &operator>>(istream &is, array<T, n> &v) {for (auto&& e : v) is >> e;return is;} template<class... A> void print_rest() {cout << "\n";} template<class T, class... A> void print_rest(const T& first, const A&... rest) {cout << " " << first; print_rest(rest...);} template<class T, class... A> void print(const T& first, const A&... rest) {cout << fixed << setprecision(16) << first; print_rest(rest...);} template<class T, class... A> void printx(const T& first, const A&... rest) {cout << fixed << setprecision(16) << first; print_rest(rest...); exit(0);} template<class T> inline string join(const T& v, string sep = " ") {if (v.size() == 0) return "" ;stringstream ss;for (auto&& e : v) ss << sep << e;return ss.str().substr(1);} template<class T> V<T> make_vec(size_t n, T a) {return V<T>(n, a);} template<class... Ts> auto make_vec(size_t n, Ts... ts) {return V<decltype(make_vec(ts...))>(n, make_vec(ts...));} template<class T> inline bool chmax(T& a, T b) {if (a < b) {a = b; return 1;} return 0;} template<class T> inline bool chmin(T& a, T b) {if (a > b) {a = b; return 1;} return 0;} template<class T> inline int lower_index(V<T>&a , T x) {return distance(a.begin(), lower_bound(all(a), x));} template<class T> inline int upper_index(V<T>&a , T x) {return distance(a.begin(), upper_bound(all(a), x));} template<class T, class F> pair<T,T> binarysearch(T ng, T ok, T eps, F f, bool sign = false) {while(abs(ng-ok)>eps) {auto mid=ng+(ok-ng)/2;if(sign^f(mid)){ok = mid;}else{ng = mid;}}return {ng,ok};} template<class T> constexpr T cdiv(T x, T y) {return (x+y-1)/y;} template<class T> constexpr bool between(T a, T x, T b) {return (a <= x && x < b);} template<class T> constexpr T pos1d(T y, T x, T h, T w) {assert(between(T(0),y,h));assert(between(T(0),x,w));return y*w + x;} template<class T> constexpr pair<T,T> pos2d(T p, T h, T w) {T y = p/w, x = p - y*w;assert(between(T(0),y,h));assert(between(T(0),x,w));return {y, x};} constexpr int INF = (1 << 30) - 1; bool is_prime(const long long n) { if (n <= 1) return false; const V<long long> primes = {2,3,5,7,11,13,17,19,23,29,31,37}; for (auto b: primes) { if (b == n) return true; if (n % b == 0) return false; } long long s = __builtin_ctzll(n - 1), d = n >> s; for (auto b : primes) { long long p = 1, i = s, j = d, k = b; while (j) { if (j & 1) p = (__int128) p * k % n; k = (__int128) k * k % n; j >>= 1; } while (p != 1 && p != n - 1 && b % n && --i) p = (__int128) p * p % n; if (p != n - 1 && i != s) return false; } return true; } struct Solver { void solve() { int n; cin >> n; V<long long> x(n); cin >> x; rep(i,n) print(x[i], is_prime(x[i])); } } solver; signed main(void) {cin.tie(nullptr); ios::sync_with_stdio(false); dump("");solver.solve();return 0;}