結果
問題 | No.1706 Many Bus Stops (hard) |
ユーザー | stoq |
提出日時 | 2021-10-08 22:44:51 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 18 ms / 2,000 ms |
コード長 | 11,657 bytes |
コンパイル時間 | 6,070 ms |
コンパイル使用メモリ | 286,140 KB |
実行使用メモリ | 9,216 KB |
最終ジャッジ日時 | 2024-07-23 05:50:22 |
合計ジャッジ時間 | 7,376 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 17 ms
9,216 KB |
testcase_01 | AC | 17 ms
9,216 KB |
testcase_02 | AC | 17 ms
9,088 KB |
testcase_03 | AC | 17 ms
9,088 KB |
testcase_04 | AC | 17 ms
9,088 KB |
testcase_05 | AC | 17 ms
9,088 KB |
testcase_06 | AC | 18 ms
9,216 KB |
testcase_07 | AC | 17 ms
9,088 KB |
testcase_08 | AC | 17 ms
9,088 KB |
testcase_09 | AC | 17 ms
9,088 KB |
testcase_10 | AC | 16 ms
9,088 KB |
testcase_11 | AC | 17 ms
9,088 KB |
testcase_12 | AC | 17 ms
9,088 KB |
testcase_13 | AC | 17 ms
9,088 KB |
testcase_14 | AC | 17 ms
9,216 KB |
testcase_15 | AC | 18 ms
9,216 KB |
testcase_16 | AC | 17 ms
9,216 KB |
testcase_17 | AC | 17 ms
9,088 KB |
testcase_18 | AC | 18 ms
9,088 KB |
testcase_19 | AC | 17 ms
9,088 KB |
testcase_20 | AC | 18 ms
9,216 KB |
testcase_21 | AC | 18 ms
9,088 KB |
testcase_22 | AC | 17 ms
9,216 KB |
testcase_23 | AC | 17 ms
9,088 KB |
testcase_24 | AC | 18 ms
9,088 KB |
testcase_25 | AC | 18 ms
9,088 KB |
testcase_26 | AC | 18 ms
9,216 KB |
testcase_27 | AC | 17 ms
9,088 KB |
testcase_28 | AC | 17 ms
9,216 KB |
testcase_29 | AC | 17 ms
9,088 KB |
testcase_30 | AC | 17 ms
9,216 KB |
testcase_31 | AC | 17 ms
9,088 KB |
testcase_32 | AC | 17 ms
9,088 KB |
testcase_33 | AC | 17 ms
9,088 KB |
testcase_34 | AC | 17 ms
9,216 KB |
testcase_35 | AC | 18 ms
9,216 KB |
testcase_36 | AC | 17 ms
9,216 KB |
testcase_37 | AC | 18 ms
9,088 KB |
testcase_38 | AC | 17 ms
9,088 KB |
testcase_39 | AC | 18 ms
9,088 KB |
testcase_40 | AC | 18 ms
9,216 KB |
testcase_41 | AC | 17 ms
9,216 KB |
testcase_42 | AC | 17 ms
9,088 KB |
ソースコード
#define MOD_TYPE 1 #pragma region Macros #include <bits/stdc++.h> using namespace std; #include <atcoder/all> using namespace atcoder; #if 0 #include <boost/multiprecision/cpp_dec_float.hpp> #include <boost/multiprecision/cpp_int.hpp> using Int = boost::multiprecision::cpp_int; using lld = boost::multiprecision::cpp_dec_float_100; #endif #if 1 #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #endif using ll = long long int; using ld = long double; using pii = pair<int, int>; using pll = pair<ll, ll>; using pld = pair<ld, ld>; template <typename Q_type> using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>; #if MOD_TYPE == 1 constexpr ll MOD = ll(1e9 + 7); #else #if MOD_TYPE == 2 constexpr ll MOD = 998244353; #else constexpr ll MOD = 1000003; #endif #endif using mint = static_modint<MOD>; constexpr int INF = (int)1e9 + 10; constexpr ll LINF = (ll)4e18; constexpr double PI = acos(-1.0); constexpr double EPS = 1e-11; constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0}; constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0}; #define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i) #define rep(i, n) REP(i, 0, n) #define REPI(i, m, n) for (int i = m; i < (int)(n); ++i) #define repi(i, n) REPI(i, 0, n) #define MP make_pair #define MT make_tuple #define YES(n) cout << ((n) ? "YES" : "NO") << "\n" #define Yes(n) cout << ((n) ? "Yes" : "No") << "\n" #define possible(n) cout << ((n) ? "possible" : "impossible") << "\n" #define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n" #define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n" #define all(v) v.begin(), v.end() #define NP(v) next_permutation(all(v)) #define dbg(x) cerr << #x << ":" << x << "\n"; #define UNIQUE(v) v.erase(unique(all(v)), v.end()) struct io_init { io_init() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << setprecision(30) << setiosflags(ios::fixed); }; } io_init; template <typename T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <typename T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } inline ll CEIL(ll a, ll b) { return (a + b - 1) / b; } template <typename A, size_t N, typename T> inline void Fill(A (&array)[N], const T &val) { fill((T *)array, (T *)(array + N), val); } template <typename T> vector<T> compress(vector<T> &v) { vector<T> val = v; sort(all(val)), val.erase(unique(all(val)), val.end()); for (auto &&vi : v) vi = lower_bound(all(val), vi) - val.begin(); return val; } template <typename T, typename U> constexpr istream &operator>>(istream &is, pair<T, U> &p) noexcept { is >> p.first >> p.second; return is; } template <typename T, typename U> constexpr ostream &operator<<(ostream &os, pair<T, U> p) noexcept { os << p.first << " " << p.second; return os; } ostream &operator<<(ostream &os, mint m) { os << m.val(); return os; } random_device seed_gen; mt19937_64 engine(seed_gen()); struct BiCoef { vector<mint> fact_, inv_, finv_; BiCoef(int n) noexcept : fact_(n, 1), inv_(n, 1), finv_(n, 1) { fact_.assign(n, 1), inv_.assign(n, 1), finv_.assign(n, 1); for (int i = 2; i < n; i++) { fact_[i] = fact_[i - 1] * i; inv_[i] = -inv_[MOD % i] * (MOD / i); finv_[i] = finv_[i - 1] * inv_[i]; } } mint C(ll n, ll k) const noexcept { if (n < k || n < 0 || k < 0) return 0; return fact_[n] * finv_[k] * finv_[n - k]; } mint P(ll n, ll k) const noexcept { return C(n, k) * fact_[k]; } mint H(ll n, ll k) const noexcept { return C(n + k - 1, k); } mint Ch1(ll n, ll k) const noexcept { if (n < 0 || k < 0) return 0; mint res = 0; for (int i = 0; i < n; i++) res += C(n, i) * mint(n - i).pow(k) * (i & 1 ? -1 : 1); return res; } mint fact(ll n) const noexcept { if (n < 0) return 0; return fact_[n]; } mint inv(ll n) const noexcept { if (n < 0) return 0; return inv_[n]; } mint finv(ll n) const noexcept { if (n < 0) return 0; return finv_[n]; } }; BiCoef bc(500010); #pragma endregion #pragma region FPS // 引用: // https://opt-cp.com/fps-implementation/ #define fastprod 0 #define drep2(i, m, n) for (int i = (m)-1; i >= (n); --i) #define drep(i, n) drep2(i, n, 0) template <class T> struct FormalPowerSeries : vector<T> { using vector<T>::vector; using vector<T>::operator=; using F = FormalPowerSeries; F operator-() const { F res(*this); for (auto &e : res) e = -e; return res; } F &operator*=(const T &g) { for (auto &e : *this) e *= g; return *this; } F &operator/=(const T &g) { assert(g != T(0)); *this *= g.inv(); return *this; } F &operator+=(const F &g) { int n = (*this).size(), m = g.size(); repi(i, min(n, m))(*this)[i] += g[i]; return *this; } F &operator-=(const F &g) { int n = (*this).size(), m = g.size(); repi(i, min(n, m))(*this)[i] -= g[i]; return *this; } F &operator<<=(const int d) { int n = (*this).size(); (*this).insert((*this).begin(), d, 0); (*this).resize(n); return *this; } F &operator>>=(const int d) { int n = (*this).size(); (*this).erase((*this).begin(), (*this).begin() + min(n, d)); (*this).resize(n); return *this; } F inv(int d = -1) const { int n = (*this).size(); assert(n != 0 && (*this)[0] != 0); if (d == -1) d = n; assert(d > 0); F res{(*this)[0].inv()}; while (res.size() < d) { int m = size(res); F f(begin(*this), begin(*this) + min(n, 2 * m)); F r(res); f.resize(2 * m), internal::butterfly(f); r.resize(2 * m), internal::butterfly(r); repi(i, 2 * m) f[i] *= r[i]; internal::butterfly_inv(f); f.erase(f.begin(), f.begin() + m); f.resize(2 * m), internal::butterfly(f); repi(i, 2 * m) f[i] *= r[i]; internal::butterfly_inv(f); T iz = T(2 * m).inv(); iz *= -iz; repi(i, m) f[i] *= iz; res.insert(res.end(), f.begin(), f.begin() + m); } return {res.begin(), res.begin() + d}; } // fast: FMT-friendly modulus only #if fastprod F &operator*=(const F &g) { int n = (*this).size(); *this = convolution(*this, g); (*this).resize(n); return *this; } F &operator/=(const F &g) { int n = (*this).size(); *this = convolution(*this, g.inv(n)); (*this).resize(n); return *this; } #else F &operator*=(const F &g) { int n = (*this).size(), m = g.size(); drep(i, n) { (*this)[i] *= g[0]; REPI(j, 1, min(i + 1, m))(*this)[i] += (*this)[i - j] * g[j]; } return *this; } F &operator/=(const F &g) { assert(g[0] != T(0)); T ig0 = g[0].inv(); int n = (*this).size(), m = g.size(); repi(i, n) { REPI(j, 1, min(i + 1, m))(*this)[i] -= (*this)[i - j] * g[j]; (*this)[i] *= ig0; } return *this; } #endif // sparse F &operator*=(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); if (d == 0) g.erase(g.begin()); else c = 0; drep(i, n) { (*this)[i] *= c; for (auto &[j, b] : g) { if (j > i) break; (*this)[i] += (*this)[i - j] * b; } } return *this; } F &operator/=(vector<pair<int, T>> g) { int n = (*this).size(); auto [d, c] = g.front(); assert(d == 0 && c != T(0)); T ic = c.inv(); g.erase(g.begin()); repi(i, n) { for (auto &[j, b] : g) { if (j > i) break; (*this)[i] -= (*this)[i - j] * b; } (*this)[i] *= ic; } return *this; } // multiply and divide (1 + cz^d) void multiply(const int d, const T c) { int n = (*this).size(); if (c == T(1)) drep(i, n - d)(*this)[i + d] += (*this)[i]; else if (c == T(-1)) drep(i, n - d)(*this)[i + d] -= (*this)[i]; else drep(i, n - d)(*this)[i + d] += (*this)[i] * c; } void divide(const int d, const T c) { int n = (*this).size(); if (c == T(1)) repi(i, n - d)(*this)[i + d] -= (*this)[i]; else if (c == T(-1)) repi(i, n - d)(*this)[i + d] += (*this)[i]; else repi(i, n - d)(*this)[i + d] -= (*this)[i] * c; } T eval(const T &a) const { T x(1), res(0); for (auto e : *this) res += e * x, x *= a; return res; } void differentiate() { int n = (*this).size(); (*this) >>= 1; REPI(i, 1, n - 1)(*this)[i] *= (i + 1); } void integrate(bool ext = true) { if (ext) (*this).push_back(0); int n = (*this).size(); (*this) <<= 1; REPI(i, 1, n)(*this)[i] *= bc.inv(i); } F operator*(const T &g) const { return F(*this) *= g; } F operator/(const T &g) const { return F(*this) /= g; } F operator+(const F &g) const { return F(*this) += g; } F operator-(const F &g) const { return F(*this) -= g; } F operator<<(const int d) const { return F(*this) <<= d; } F operator>>(const int d) const { return F(*this) >>= d; } F operator*(const F &g) const { return F(*this) *= g; } F operator/(const F &g) const { return F(*this) /= g; } F operator*(vector<pair<int, T>> g) const { return F(*this) *= g; } F operator/(vector<pair<int, T>> g) const { return F(*this) /= g; } }; using fps = FormalPowerSeries<mint>; using sfps = vector<pair<int, mint>>; void add_ext(fps &f, fps &g) { f.resize(max(f.size(), g.size())); f += g; } void prod_ext(fps &f, fps &g) { f.resize(f.size() + g.size() - 1, 0); f *= g; } void prod_ext(fps &f, sfps &g) { int m = 0; for (auto [d, c] : g) { if (m < d) m = d; } f.resize(f.size() + m); f *= g; } #pragma endregion fps Berlekamp_Massey(const fps &a) { int n = a.size(); fps c{-1}, c2{0}; mint r2 = 1; int i2 = -1; for (int i = 0; i < n; i++) { mint r = 0; int d = c.size(); for (int j = 0; j < d; j++) r += c[j] * a[i - j]; if (r == 0) continue; mint coef = -r / r2; int d2 = c2.size(); if (d - i >= d2 - i2) { for (int j = 0; j < d2; j++) c[j + i - i2] += c2[j] * coef; } else { fps tmp(c); c.resize(d2 + i - i2); for (int j = 0; j < d2; j++) c[j + i - i2] += c2[j] * coef; c2 = std::move(tmp); i2 = i, r2 = r; } } return {c.begin() + 1, c.end()}; } // return generating function of a, s.t. F(x) = P(x) / Q(x) std::pair<fps, fps> find_generating_function(fps a) { auto q = Berlekamp_Massey(a); int d = q.size(); a.resize(d); q.insert(q.begin(), 1); for (int i = 1; i < (int)q.size(); i++) q[i] *= -1; a *= q; return {a, q}; } // return [x^k] p(x) / q(x) mint compute_Kthterm(fps p, fps q, ll k) { int d = q.size(); assert(q[0] == 1 and p.size() + 1 <= d); while (k) { auto q_minus = q; for (int i = 1; i < d; i += 2) q_minus[i] *= -1; p.resize(2 * d); q.resize(2 * d); p *= q_minus; q *= q_minus; for (int i = 0; i < d - 1; i++) p[i] = p[(i << 1) | (k & 1)]; for (int i = 0; i < d; i++) q[i] = q[i << 1]; p.resize(d - 1); q.resize(d); k >>= 1; } return p[0]; } mint compute_Kthterm(std::pair<fps, fps> f, ll k) { return compute_Kthterm(f.first, f.second, k); } void solve() { ll c, n, m; cin >> c >> n >> m; const int d = 10; fps a(d, 0), b(d, 0); a[0] = 1, b[0] = 0; REP(i, 1, d) { a[i] += a[i - 1]; if (i >= 2) a[i] += b[i - 2]; a[i] *= bc.inv(c); if (i >= 2) b[i] += a[i - 2] * (c - 1) + b[i - 2] * (c - 2); b[i] += b[i - 1]; b[i] *= bc.inv(c); } auto g = find_generating_function(a); mint p = 1 - compute_Kthterm(g, n); p = p.pow(m); cout << 1 - p << "\n"; } int main() { solve(); }