結果

問題 No.1705 Mode of long array
ユーザー mkawa2
提出日時 2021-10-08 23:39:58
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 319 ms / 3,000 ms
コード長 4,327 bytes
コンパイル時間 207 ms
コンパイル使用メモリ 82,552 KB
実行使用メモリ 107,672 KB
最終ジャッジ日時 2024-07-23 08:00:54
合計ジャッジ時間 14,385 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 51
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
sys.setrecursionlimit(200005)
int1 = lambda x: int(x)-1
p2D = lambda x: print(*x, sep="\n")
def II(): return int(sys.stdin.readline())
def LI(): return list(map(int, sys.stdin.readline().split()))
def LI1(): return list(map(int1, sys.stdin.readline().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def LLI1(rows_number): return [LI1() for _ in range(rows_number)]
def SI(): return sys.stdin.readline().rstrip()
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0)]
dij = [(0, 1), (1, 0), (0, -1), (-1, 0)]
# dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = 10**19
# md = 998244353
md = 10**9+7
import typing
class SegTree:
def __init__(self,
op: typing.Callable[[typing.Any, typing.Any], typing.Any],
e: typing.Any,
v: typing.Union[int, typing.List[typing.Any]]) -> None:
self._op = op
self._e = e
if isinstance(v, int):
v = [e]*v
self._n = len(v)
self._log = (self._n-1).bit_length()
self._size = 1 << self._log
self._d = [e]*(2*self._size)
for i in range(self._n):
self._d[self._size+i] = v[i]
for i in range(self._size-1, 0, -1):
self._update(i)
def set(self, p: int, x: typing.Any) -> None:
assert 0 <= p < self._n
p += self._size
self._d[p] = x
for i in range(1, self._log+1):
self._update(p >> i)
def get(self, p: int) -> typing.Any:
assert 0 <= p < self._n
return self._d[p+self._size]
def prod(self, left: int, right: int) -> typing.Any:
assert 0 <= left <= right <= self._n
sml = self._e
smr = self._e
left += self._size
right += self._size
while left < right:
if left & 1:
sml = self._op(sml, self._d[left])
left += 1
if right & 1:
right -= 1
smr = self._op(self._d[right], smr)
left >>= 1
right >>= 1
return self._op(sml, smr)
def all_prod(self) -> typing.Any:
return self._d[1]
def max_right(self, left: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= left <= self._n
assert f(self._e)
if left == self._n:
return self._n
left += self._size
sm = self._e
first = True
while first or (left & -left) != left:
first = False
while left%2 == 0:
left >>= 1
if not f(self._op(sm, self._d[left])):
while left < self._size:
left *= 2
if f(self._op(sm, self._d[left])):
sm = self._op(sm, self._d[left])
left += 1
return left-self._size
sm = self._op(sm, self._d[left])
left += 1
return self._n
def min_left(self, right: int,
f: typing.Callable[[typing.Any], bool]) -> int:
assert 0 <= right <= self._n
assert f(self._e)
if right == 0:
return 0
right += self._size
sm = self._e
first = True
while first or (right & -right) != right:
first = False
right -= 1
while right > 1 and right%2:
right >>= 1
if not f(self._op(self._d[right], sm)):
while right < self._size:
right = 2*right+1
if f(self._op(self._d[right], sm)):
sm = self._op(self._d[right], sm)
right -= 1
return right+1-self._size
sm = self._op(self._d[right], sm)
return 0
def _update(self, k: int) -> None:
self._d[k] = self._op(self._d[2*k], self._d[2*k+1])
def op(a, b):
if a > b: return a
return b
e = (-1, -1)
n, m = LI()
aa = [0]+LI()
seg = SegTree(op, e, [(a, i) for i, a in enumerate(aa)])
for _ in range(II()):
t, x, y = LI()
if t == 1:
c, _ = seg.get(x)
seg.set(x, (c+y, x))
elif t == 2:
c, _ = seg.get(x)
seg.set(x, (c-y, x))
else:
_, a = seg.all_prod()
print(a)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0