結果

問題 No.957 植林
ユーザー shotoyooshotoyoo
提出日時 2021-10-09 18:22:30
言語 PyPy3
(7.3.15)
結果
TLE  
実行時間 -
コード長 6,785 bytes
コンパイル時間 229 ms
コンパイル使用メモリ 82,896 KB
実行使用メモリ 105,536 KB
最終ジャッジ日時 2024-09-13 04:30:34
合計ジャッジ時間 11,318 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 63 ms
75,964 KB
testcase_01 AC 63 ms
68,516 KB
testcase_02 AC 64 ms
69,076 KB
testcase_03 AC 243 ms
97,772 KB
testcase_04 AC 280 ms
96,272 KB
testcase_05 AC 269 ms
98,508 KB
testcase_06 AC 281 ms
100,248 KB
testcase_07 AC 262 ms
96,744 KB
testcase_08 AC 198 ms
97,996 KB
testcase_09 AC 196 ms
97,976 KB
testcase_10 AC 204 ms
98,820 KB
testcase_11 AC 204 ms
98,028 KB
testcase_12 AC 201 ms
97,996 KB
testcase_13 AC 182 ms
95,880 KB
testcase_14 AC 198 ms
100,908 KB
testcase_15 AC 194 ms
97,608 KB
testcase_16 AC 186 ms
95,872 KB
testcase_17 AC 189 ms
96,572 KB
testcase_18 TLE -
testcase_19 TLE -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
input = lambda : sys.stdin.readline().rstrip()

write = lambda x: sys.stdout.write(x+"\n")
debug = lambda x: sys.stderr.write(x+"\n")
writef = lambda x: print("{:.12f}".format(x))


from typing import NamedTuple, Optional, List, cast


class MFGraph:
    class Edge(NamedTuple):
        src: int
        dst: int
        cap: int
        flow: int

    class _Edge:
        def __init__(self, dst: int, cap: int) -> None:
            self.dst = dst
            self.cap = cap
            self.rev: Optional[MFGraph._Edge] = None

    def __init__(self, n: int) -> None:
        self._n = n
        self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)]
        self._edges: List[MFGraph._Edge] = []

    def add_edge(self, src: int, dst: int, capacity: int) -> int:
        assert 0 <= src < self._n
        assert 0 <= dst < self._n
        m = len(self._edges)
        e = MFGraph._Edge(dst, capacity)
        re = MFGraph._Edge(src, 0)
        e.rev = re
        re.rev = e
        self._g[src].append(e)
        self._g[dst].append(re)
        self._edges.append(e)
        return m

    def get_edge(self, i: int) -> Edge:
        assert 0 <= i < len(self._edges)
        e = self._edges[i]
        re = cast(MFGraph._Edge, e.rev)
        return MFGraph.Edge(
            re.dst,
            e.dst,
            e.cap + re.cap,
            re.cap
        )

    def edges(self) -> List[Edge]:
        return [self.get_edge(i) for i in range(len(self._edges))]

    def change_edge(self, i: int, new_cap: int, new_flow: int) -> None:
        assert 0 <= i < len(self._edges)
        assert 0 <= new_flow <= new_cap
        e = self._edges[i]
        e.cap = new_cap - new_flow
        assert e.rev is not None
        e.rev.cap = new_flow

    def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int:
        assert 0 <= s < self._n
        assert 0 <= t < self._n
        assert s != t
        if flow_limit is None:
            flow_limit = cast(int, sum(e.cap for e in self._g[s]))

        current_edge = [0] * self._n
        level = [0] * self._n

        def fill(arr: List[int], value: int) -> None:
            for i in range(len(arr)):
                arr[i] = value

        def bfs() -> bool:
            fill(level, self._n)
            queue = []
            q_front = 0
            queue.append(s)
            level[s] = 0
            while q_front < len(queue):
                v = queue[q_front]
                q_front += 1
                next_level = level[v] + 1
                for e in self._g[v]:
                    if e.cap == 0 or level[e.dst] <= next_level:
                        continue
                    level[e.dst] = next_level
                    if e.dst == t:
                        return True
                    queue.append(e.dst)
            return False

        def dfs(lim: int) -> int:
            stack = []
            edge_stack: List[MFGraph._Edge] = []
            stack.append(t)
            while stack:
                v = stack[-1]
                if v == s:
                    flow = min(lim, min(e.cap for e in edge_stack))
                    for e in edge_stack:
                        e.cap -= flow
                        assert e.rev is not None
                        e.rev.cap += flow
                    return flow
                next_level = level[v] - 1
                while current_edge[v] < len(self._g[v]):
                    e = self._g[v][current_edge[v]]
                    re = cast(MFGraph._Edge, e.rev)
                    if level[e.dst] != next_level or re.cap == 0:
                        current_edge[v] += 1
                        continue
                    stack.append(e.dst)
                    edge_stack.append(re)
                    break
                else:
                    stack.pop()
                    if edge_stack:
                        edge_stack.pop()
                    level[v] = self._n
            return 0

        flow = 0
        while flow < flow_limit:
            if not bfs():
                break
            fill(current_edge, 0)
            while flow < flow_limit:
                f = dfs(flow_limit - flow)
                flow += f
                if f == 0:
                    break
        return flow

    def min_cut(self, s: int) -> List[bool]:
        visited = [False] * self._n
        stack = [s]
        visited[s] = True
        while stack:
            v = stack.pop()
            for e in self._g[v]:
                if e.cap > 0 and not visited[e.dst]:
                    visited[e.dst] = True
                    stack.append(e.dst)
        return visited
### 二部グラフマッチングの例
def bimatch(ns):
    n = len(ns)
    m = n
    # DiGraphにしないとMinフローと最大マッチングが一致しない
    g = MFGraph(n+m+2)
    s = n+m
    t = n+m+1
    for u in range(n):
        g.add_edge(s, u, capacity=1)
        for v in ns[u]:
            g.add_edge(u, v+n, capacity=1)
    for v in range(m):
            g.add_edge(n+v, t, capacity=1)
    val = g.flow(s, t, flow_limit=n)
    return val, g.edges()
def bimatch_grid(r,c,s):
    """グリッド上の二部グラフの例
    (隣接するsの値が異なるところに枝を貼る)
    """
    g = MFGraph(r*c+2)
    S = r*c
    T = r*c+1
    for i in range(r):
        for j in range(c):
            if not need[i][j]:
                continue
            nn = node(i,j)
            if (i+j)%2==0:
                g.add_edge(S, nn, capacity=1)
                f = 0
            else:
                g.add_edge(nn, T, capacity=1)
                f = 1
            tmp = []
            if i>0 and s[i-1][j]!=s[i][j]:
                tmp.append(node(i-1,j))
            if i+1<r and s[i+1][j]!=s[i][j]:
                tmp.append(node(i+1,j))
            if j>0 and s[i][j-1]!=s[i][j]:
                tmp.append(node(i,j-1))
            if j+1<c and s[i][j+1]!=s[i][j]:
                tmp.append(node(i,j+1))
            for v in tmp:
                if f:
                    g.add_edge(v, nn, capacity=1)
                else:
                    g.add_edge(nn, v, capacity=1)
    val = g.flow(S, T, flow_limit=None)
    
"""g.edges()でe.src, e.dst, e.flow各枝の情報がわかる
"""
# g.add_edge(src, dst, capacity)
# g.flow(s,t,flow_limit)
h,w = map(int, input().split())
gs = [list(map(int, input().split())) for _ in range(h)]
r = list(map(int, input().split()))
c = list(map(int, input().split()))
s = h+w
t = h+w+1
g = MFGraph(h+w+2)
for i in range(h):
    g.add_edge(s, i, sum(gs[i]))
    g.add_edge(i, t, r[i])
for j in range(w):
    g.add_edge(s, j+h, 0)
    g.add_edge(j+h, t, c[j])
    for i in range(h):
        g.add_edge(i, j+h, gs[i][j])
ans = g.flow(s,t)
ans -= sum(r) + sum(c)
print(-ans)
0