結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
nonamae
|
| 提出日時 | 2021-10-10 09:49:35 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 32 ms / 9,973 ms |
| コード長 | 10,783 bytes |
| コンパイル時間 | 841 ms |
| コンパイル使用メモリ | 41,552 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-16 23:40:53 |
| 合計ジャッジ時間 | 1,220 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
コンパイルメッセージ
main.c: In function 'read_int':
main.c:39:14: warning: implicit declaration of function 'getchar_unlocked' [-Wimplicit-function-declaration]
39 | while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
| ^~~~~~~~~~~~~~~~
main.c: In function 'write_int':
main.c:66:5: warning: implicit declaration of function 'putchar_unlocked' [-Wimplicit-function-declaration]
66 | putchar_unlocked('-');
| ^~~~~~~~~~~~~~~~
ソースコード
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize ("fast-math")
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
/* signed integer */
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
typedef __int128_t i128;
/* unsigned integer */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef __uint128_t u128;
/* floating point number */
typedef float f32;
typedef double f64;
typedef long double f80;
typedef int FastInt;
/* io */
static inline FastInt read_int(void) {
FastInt c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
static inline i64 in(void) {
i64 c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
static inline u64 inu(void) {
u64 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return x;
}
static inline void write_int(FastInt x) {
if (x < 0) {
putchar_unlocked('-');
x = -x;
}
if (x >= 10) write_int(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void out(i64 x) {
if (x < 0) {
putchar_unlocked('-');
x = -x;
}
if (x >= 10) out(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void outu(u64 x) {
if (x >= 10) outu(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void NL(void) { putchar_unlocked('\n'); }
static inline void SP(void) { putchar_unlocked(' '); }
/* MACROS */
#define POPCNT(a) __builtin_popcountll((a))
#define CTZ(a) __builtin_ctzll((a))
#define CLZ(a) __builtin_clzll((a))
#define LSBit(a) ((a)&(-(a)))
#define CLSBit(a) ((a)&((a)-(1)))
#define HAS_SINGLE_BIT(a) (POPCNT((a))==1)
#define BIT_CEIL(a) ((!(a))?(1):((POPCNT(a))==(1)?((1ull)<<((63)-CLZ((a)))):((1ull)<<((64)-CLZ(a)))))
#define BIT_FLOOR(a) ((!(a))?(0):((1ull)<<((63)-CLZ((a)))))
#define BIT_WIDTH(a) ((a)?((64)-CLZ((a))):(0))
#define _ROTL(x, s) (((x)<<((s)%(64)))|(((x)>>((64)-((s)%(64))))))
#define _ROTR(x, s) (((x)>>((s)%(64)))|(((x)<<((64)-((s)%(64))))))
#define ROTL(x, s) (((s)==(0))?(0):(((s)<(0))?(_ROTR((x),-(s))):(_ROTL((x),(s)))))
#define ROTR(x, s) (((s)==(0))?(0):(((s)<(0))?(_ROTL((x),-(s))):(_ROTR((x),(s)))))
#define SWAP(a, b) (((a)^=(b)),((b)^=(a)),((a)^=(b)))
#define MAX(a, b) ((a)>(b)?(a):(b))
#define MIN(a, b) ((a)<(b)?(a):(b))
/* montgomery modular multiplication 32-bit */
typedef u32 Montgomery;
Montgomery _one(u32 mod) {
return -1u % mod + 1;
}
Montgomery _r2(u32 mod) {
return (u64)(i64)-1 % mod + 1;
}
Montgomery _inv(u32 mod) {
u32 u = 1, v = 0, x = 1ULL << 31;
for (FastInt i = 0; i < 32; i++) {
if (u & 1) u = (u + mod) >> 1, v = (v >> 1) + x;
else u >>= 1, v >>= 1;
}
return -v;
}
Montgomery _MR(u64 a, Montgomery inv, u32 mod) {
i32 z = (a >> 32) - ((((u32)a * inv) * (u64)mod) >> 32);
return z < 0 ? z + mod : (u64)z;
}
Montgomery _to_montgomery(u32 a, Montgomery r2, Montgomery inv, u32 mod) {
return _MR((u64)a * r2, inv, mod);
}
u32 _from_montgomery(Montgomery A, Montgomery inv, u32 mod) {
u32 temp = _MR((u64)A, inv, mod) - mod;
return temp + (mod & -(temp >> 31u));
}
Montgomery add_MR(Montgomery A, Montgomery B, u32 mod) {
A += B - (mod << 1u);
A += (mod << 1u) & -(A >> 31u);
return A;
}
Montgomery sub_MR(Montgomery A, Montgomery B, u32 mod) {
A -= B;
A += (mod << 1u) & -(A >> 31u);
return A;
}
Montgomery min_MR(Montgomery A, u32 mod) {
return sub_MR(0, A, mod);
}
Montgomery mul_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
return _MR((u64)A * B, inv, mod);
}
Montgomery pow_MR(Montgomery A, FastInt n, Montgomery inv, u32 mod) {
Montgomery ret = _one(mod);
while (n > 0) {
if (n & 1) ret = mul_MR(ret, A, inv, mod);
A = mul_MR(A, A, inv, mod);
n >>= 1;
}
return ret;
}
Montgomery inv_MR(Montgomery A, Montgomery inv, u32 mod) {
return pow_MR(A, (i64)mod - 2, inv, mod);
}
Montgomery div_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
return mul_MR(A, inv_MR(B, inv, mod), inv, mod);
}
bool eq_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
return _from_montgomery(A, inv, mod) == _from_montgomery(B, inv, mod);
}
bool neq_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
return _from_montgomery(A, inv, mod) != _from_montgomery(B, inv, mod);
}
static inline Montgomery in_mint(Montgomery r2, Montgomery inv, u32 mod) {
u32 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return _to_montgomery(x, r2, inv, mod);
}
static inline void out_mint(Montgomery A, Montgomery inv, u32 mod) {
u32 a = _from_montgomery(A, inv, mod);
if (a >= 10) outu(a / 10);
putchar_unlocked(a - a / 10 * 10 + 48);
}
/* montgomery modular multiplication 64-bit */
typedef u64 Montgomery64;
Montgomery64 _one_64(u64 mod) {
return -1ull % mod + 1;
}
Montgomery64 _r2_64(u64 mod) {
return (u128)(i128)-1 % mod + 1;
}
Montgomery64 _inv_64(u64 mod) {
u64 u = 1, v = 0, x = 1ULL << 63;
for (FastInt i = 0; i < 64; i++) {
if (u & 1) u = (u + mod) >> 1, v = (v >> 1) + x;
else u >>= 1, v >>= 1;
}
return -v;
}
Montgomery64 _MR_64(u128 a, Montgomery64 inv, u64 mod) {
i64 A = (a >> 64) - ((((u64)a * inv) * (u128)mod) >> 64);
return A < 0 ? A + mod : (u64)A;
}
Montgomery64 _to_montgomery_64(u64 a, Montgomery64 r2, Montgomery64 inv, u64 mod) {
return _MR_64((u128)a * r2, inv, mod);
}
u64 _from_montgomery_64(Montgomery64 A, Montgomery64 inv, u64 mod) {
u64 temp = _MR_64((u128)A, inv, mod) - mod;
return temp + (mod & -(temp >> 63u));
}
Montgomery64 add_MR_64(Montgomery64 A, Montgomery64 B, u64 mod) {
A += B - (mod << 1u);
A += (mod << 1u) & -(A >> 63u);
return A;
}
Montgomery64 sub_MR_64(Montgomery64 A, Montgomery64 B, u64 mod) {
A -= B;
A += (mod << 1u) & -(A >> 63u);
return A;
}
Montgomery64 min_MR_64(Montgomery64 A, u64 mod) {
return sub_MR_64(0, A, mod);
}
Montgomery64 mul_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
return _MR_64((u128)A * B, inv, mod);
}
Montgomery64 pow_MR_64(Montgomery64 A, i64 n, Montgomery64 inv, u64 mod) {
Montgomery64 ret = _one_64(mod), mul = A;
while (n > 0) {
if (n & 1) ret = mul_MR_64(ret, mul, inv, mod);
mul = mul_MR_64(mul, mul, inv, mod);
n >>= 1;
}
return ret;
}
Montgomery64 inv_MR_64(Montgomery64 A, Montgomery64 inv, u64 mod) {
return pow_MR_64(A, (i64)mod - 2, inv, mod);
}
Montgomery64 div_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
return mul_MR_64(A, inv_MR_64(B, inv, mod), inv, mod);
}
bool eq_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
return _from_montgomery_64(A, inv, mod) == _from_montgomery_64(B, inv, mod);
}
bool neq_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
return _from_montgomery_64(A, inv, mod) != _from_montgomery_64(B, inv, mod);
}
static inline Montgomery64 in_mint_64(Montgomery64 r2, Montgomery64 inv, u64 mod) {
u64 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return _to_montgomery_64(x, r2, inv, mod);
}
static inline void out_mint_64(Montgomery64 A, Montgomery64 inv, u64 mod) {
u64 a = _from_montgomery_64(A, inv, mod);
if (a >= 10) outu(a / 10);
putchar_unlocked(a - a / 10 * 10 + 48);
}
bool miller_rabin32(u32 n, u32 d, const u32 *bases, u32 bases_len, Montgomery r2, Montgomery inv, Montgomery one, Montgomery rev) {
for (u32 i = 0; i < bases_len; i++) {
if (n <= bases[i]) break;
Montgomery a = _to_montgomery(bases[i], r2, inv, n);
u32 t = d;
Montgomery y = pow_MR(a, t, inv, n);
while (t != n - 1 && y != one && y != rev) {
y = mul_MR(y, y, inv, n);
t <<= 1;
}
if (y != rev && (!(t & 1))) return false;
}
return true;
}
bool miller_rabin64(u64 n, u64 d, const u64 *bases, u64 bases_len, Montgomery64 r2, Montgomery64 inv, Montgomery64 one, Montgomery64 rev) {
for (u64 i = 0; i < bases_len; i++) {
if (n <= bases[i]) break;
Montgomery64 a = _to_montgomery_64(bases[i], r2, inv, n);
u64 t = d;
Montgomery64 y = pow_MR_64(a, t, inv, n);
while (t != n - 1 && y != one && y != rev) {
y = mul_MR_64(y, y, inv, n);
t <<= 1;
}
if (y != rev && (!(t & 1))) return false;
}
return true;
}
bool is_prime32(u32 n) {
u32 m = n - 1;
Montgomery r2 = _r2(n);
Montgomery inv = _inv(n);
Montgomery one = _one(n);
Montgomery rev = _to_montgomery(m, r2, inv, n);
u32 d = m >> CTZ(m);
const u32 bases1[] = { 2u };
const u32 bases2[] = { 2u, 3u };
const u32 bases3[] = { 2u, 7u, 61u };
if (n < 2047u) { return miller_rabin32(n, d, bases1, 1u, r2, inv, one, rev); }
if (n < 1373653u) { return miller_rabin32(n, d, bases2, 2u, r2, inv, one, rev); }
return miller_rabin32(n, d, bases3, 3u, r2, inv, one, rev);
}
bool is_prime64(u64 n) {
u64 m = n - 1;
Montgomery64 r2 = _r2_64(n);
Montgomery64 inv = _inv_64(n);
Montgomery64 one = _one_64(n);
Montgomery64 rev = _to_montgomery_64(m, r2, inv, n);
u64 d = m >> CTZ(m);
const u64 bases4[] = { 2ull, 13ull, 23ull, 1662803ull };
const u64 bases5[] = { 2ull, 3ull, 5ull, 7ull, 11ull };
const u64 bases6[] = { 2ull, 3ull, 5ull, 7ull, 11ull, 13ull };
const u64 bases7[] = { 2ull, 3ull, 5ull, 7ull, 11ull, 13ull, 17ull };
const u64 bases8[] = { 2ull, 325ull, 9375ull, 28178ull, 450775ull, 9780504ull, 1795265022ull };
if (n < 1122004669633ull) { return miller_rabin64(n, d, bases4, 4u, r2, inv, one, rev); }
if (n < 2152302898747ull) { return miller_rabin64(n, d, bases5, 5u, r2, inv, one, rev); }
if (n < 3474749660383ull) { return miller_rabin64(n, d, bases6, 6u, r2, inv, one, rev); }
if (n < 341550071728321ull) { return miller_rabin64(n, d, bases7, 7u, r2, inv, one, rev); }
return miller_rabin64(n, d, bases8, 7u, r2, inv, one, rev);
}
bool is_prime(u64 n) {
if (n <= 3u) return n == 2u || n == 3u;
if (!(n & 1)) return false;
if (n < ((u32)1u << 31)) {
return is_prime32((u32)n);
}
return is_prime64(n);
}
void Main(void) {
FastInt Q = read_int();
while (Q--) {
u64 x = inu();
outu(x); SP(); outu(is_prime(x));
NL();
}
}
int main(void) {
Main();
return 0;
}
nonamae