結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー nonamaenonamae
提出日時 2021-10-10 09:52:01
言語 C
(gcc 12.3.0)
結果
AC  
実行時間 32 ms / 9,973 ms
コード長 10,797 bytes
コンパイル時間 677 ms
コンパイル使用メモリ 40,704 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-16 23:40:46
合計ジャッジ時間 1,274 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 21 ms
5,248 KB
testcase_05 AC 20 ms
5,248 KB
testcase_06 AC 12 ms
5,248 KB
testcase_07 AC 12 ms
5,248 KB
testcase_08 AC 13 ms
5,248 KB
testcase_09 AC 32 ms
5,248 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.c: In function 'read_int':
main.c:39:14: warning: implicit declaration of function 'getchar_unlocked' [-Wimplicit-function-declaration]
   39 |   while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
      |              ^~~~~~~~~~~~~~~~
main.c: In function 'write_int':
main.c:66:5: warning: implicit declaration of function 'putchar_unlocked' [-Wimplicit-function-declaration]
   66 |     putchar_unlocked('-');
      |     ^~~~~~~~~~~~~~~~

ソースコード

diff #

#pragma GCC target("avx2")
#pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
// #pragma GCC optimize ("fast-math")

#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

/* signed integer */
typedef   int8_t      i8;
typedef   int16_t     i16;
typedef   int32_t     i32;
typedef   int64_t     i64;
typedef __int128_t    i128;

/* unsigned integer */
typedef   uint8_t     u8;
typedef   uint16_t    u16;
typedef   uint32_t    u32;
typedef   uint64_t    u64;
typedef __uint128_t   u128;

/* floating point number */
typedef   float       f32;
typedef   double      f64;
typedef   long double f80;

typedef   int         FastInt;

/* io */
static inline FastInt read_int(void) {
  FastInt c, x = 0, f = 1;
  while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return f * x;
}
static inline i64 in(void) {
  i64 c, x = 0, f = 1;
  while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return f * x;
}
static inline u64 inu(void) {
  u64 c, x = 0;
  while (c = getchar_unlocked(), c < 48 || c > 57);
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return x;
}
static inline void write_int(FastInt x) {
  if (x < 0) {
    putchar_unlocked('-');
    x = -x;
  }
  if (x >= 10) write_int(x / 10);
  putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void out(i64 x) {
  if (x < 0) {
    putchar_unlocked('-');
    x = -x;
  }
  if (x >= 10) out(x / 10);
  putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void outu(u64 x) {
  if (x >= 10) outu(x / 10);
  putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void NL(void) { putchar_unlocked('\n'); }
static inline void SP(void) { putchar_unlocked(' '); }

/* MACROS */
#define POPCNT(a) __builtin_popcountll((a))
#define CTZ(a) __builtin_ctzll((a))
#define CLZ(a) __builtin_clzll((a))
#define LSBit(a) ((a)&(-(a)))
#define CLSBit(a) ((a)&((a)-(1)))
#define HAS_SINGLE_BIT(a) (POPCNT((a))==1)
#define BIT_CEIL(a) ((!(a))?(1):((POPCNT(a))==(1)?((1ull)<<((63)-CLZ((a)))):((1ull)<<((64)-CLZ(a)))))
#define BIT_FLOOR(a) ((!(a))?(0):((1ull)<<((63)-CLZ((a)))))
#define BIT_WIDTH(a) ((a)?((64)-CLZ((a))):(0))
#define _ROTL(x, s) (((x)<<((s)%(64)))|(((x)>>((64)-((s)%(64))))))
#define _ROTR(x, s) (((x)>>((s)%(64)))|(((x)<<((64)-((s)%(64))))))
#define ROTL(x, s) (((s)==(0))?(0):(((s)<(0))?(_ROTR((x),-(s))):(_ROTL((x),(s)))))
#define ROTR(x, s) (((s)==(0))?(0):(((s)<(0))?(_ROTL((x),-(s))):(_ROTR((x),(s)))))
#define SWAP(a, b) (((a)^=(b)),((b)^=(a)),((a)^=(b)))
#define MAX(a, b) ((a)>(b)?(a):(b))
#define MIN(a, b) ((a)<(b)?(a):(b))

/* montgomery modular multiplication 32-bit */
typedef u32 Montgomery;

Montgomery _one(u32 mod) {
  return -1u % mod + 1;
}
Montgomery _r2(u32 mod) {
  return (u64)(i64)-1 % mod + 1;
}
Montgomery _inv(u32 mod) {
  u32 u = 1, v = 0, x = 1ULL << 31;
  for (FastInt i = 0; i < 32; i++) {
    if (u & 1) u = (u + mod) >> 1, v = (v >> 1) + x;
    else u >>= 1, v >>= 1;
  }
  return -v;
}
Montgomery _MR(u64 a, Montgomery inv, u32 mod) {
  i32 z = (a >> 32) - ((((u32)a * inv) * (u64)mod) >> 32);
  return z < 0 ? z + mod : (u64)z;
}
Montgomery _to_montgomery(u32 a, Montgomery r2, Montgomery inv, u32 mod) {
  return _MR((u64)a * r2, inv, mod);
}
u32 _from_montgomery(Montgomery A, Montgomery inv, u32 mod) {
  u32 temp = _MR((u64)A, inv, mod) - mod;
  return temp + (mod & -(temp >> 31u));
}
Montgomery add_MR(Montgomery A, Montgomery B, u32 mod) {
  A += B - (mod << 1u);
  A += (mod << 1u) & -(A >> 31u);
  return A;
}
Montgomery sub_MR(Montgomery A, Montgomery B, u32 mod) {
  A -= B;
  A += (mod << 1u) & -(A >> 31u);
  return A;
}
Montgomery min_MR(Montgomery A, u32 mod) {
  return sub_MR(0, A, mod);
}
Montgomery mul_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
  return _MR((u64)A * B, inv, mod);
}
Montgomery pow_MR(Montgomery A, FastInt n, Montgomery inv, u32 mod) {
  Montgomery ret = _one(mod);
  while (n > 0) {
    if (n & 1) ret = mul_MR(ret, A, inv, mod);
    A = mul_MR(A, A, inv, mod);
    n >>= 1;
  }
  return ret;
}
Montgomery inv_MR(Montgomery A, Montgomery inv, u32 mod) {
  return pow_MR(A, (i64)mod - 2, inv, mod);
}
Montgomery div_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
  return mul_MR(A, inv_MR(B, inv, mod), inv, mod);
}
bool eq_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
  return _from_montgomery(A, inv, mod) == _from_montgomery(B, inv, mod);
}
bool neq_MR(Montgomery A, Montgomery B, Montgomery inv, u32 mod) {
  return _from_montgomery(A, inv, mod) != _from_montgomery(B, inv, mod);
}
static inline Montgomery in_mint(Montgomery r2, Montgomery inv, u32 mod) {
  u32 c, x = 0;
  while (c = getchar_unlocked(), c < 48 || c > 57);
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return _to_montgomery(x, r2, inv, mod);
}
static inline void out_mint(Montgomery A, Montgomery inv, u32 mod) {
  u32 a = _from_montgomery(A, inv, mod);
  if (a >= 10) outu(a / 10);
  putchar_unlocked(a - a / 10 * 10 + 48);
}

/* montgomery modular multiplication 64-bit */
typedef u64 Montgomery64;

Montgomery64 _one_64(u64 mod) {
  return -1ull % mod + 1;
}
Montgomery64 _r2_64(u64 mod) {
  return (u128)(i128)-1 % mod + 1;
}
Montgomery64 _inv_64(u64 mod) {
  u64 u = 1, v = 0, x = 1ULL << 63;
  for (FastInt i = 0; i < 64; i++) {
    if (u & 1) u = (u + mod) >> 1, v = (v >> 1) + x;
    else u >>= 1, v >>= 1;
  }
  return -v;
}
Montgomery64 _MR_64(u128 a, Montgomery64 inv, u64 mod) {
  i64 A = (a >> 64) - ((((u64)a * inv) * (u128)mod) >> 64);
  return A < 0 ? A + mod : (u64)A;
}
Montgomery64 _to_montgomery_64(u64 a, Montgomery64 r2, Montgomery64 inv, u64 mod) {
  return _MR_64((u128)a * r2, inv, mod);
}
u64 _from_montgomery_64(Montgomery64 A, Montgomery64 inv, u64 mod) {
  u64 temp = _MR_64((u128)A, inv, mod) - mod;
  return temp + (mod & -(temp >> 63u));
}
Montgomery64 add_MR_64(Montgomery64 A, Montgomery64 B, u64 mod) {
  A += B - (mod << 1u);
  A += (mod << 1u) & -(A >> 63u);
  return A;
}
Montgomery64 sub_MR_64(Montgomery64 A, Montgomery64 B, u64 mod) {
  A -= B;
  A += (mod << 1u) & -(A >> 63u);
  return A;
}
Montgomery64 min_MR_64(Montgomery64 A, u64 mod) {
  return sub_MR_64(0, A, mod);
}
Montgomery64 mul_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
  return _MR_64((u128)A * B, inv, mod);
}
Montgomery64 pow_MR_64(Montgomery64 A, i64 n, Montgomery64 inv, u64 mod) {
  Montgomery64 ret = _one_64(mod), mul = A;
  while (n > 0) {
    if (n & 1) ret = mul_MR_64(ret, mul, inv, mod);
    mul = mul_MR_64(mul, mul, inv, mod);
    n >>= 1;
  }
  return ret;
}
Montgomery64 inv_MR_64(Montgomery64 A, Montgomery64 inv, u64 mod) {
  return pow_MR_64(A, (i64)mod - 2, inv, mod);
}
Montgomery64 div_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
  return mul_MR_64(A, inv_MR_64(B, inv, mod), inv, mod);
}
bool eq_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
  return _from_montgomery_64(A, inv, mod) == _from_montgomery_64(B, inv, mod);
}
bool neq_MR_64(Montgomery64 A, Montgomery64 B, Montgomery64 inv, u64 mod) {
  return _from_montgomery_64(A, inv, mod) != _from_montgomery_64(B, inv, mod);
}
static inline Montgomery64 in_mint_64(Montgomery64 r2, Montgomery64 inv, u64 mod) {
  u64 c, x = 0;
  while (c = getchar_unlocked(), c < 48 || c > 57);
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return _to_montgomery_64(x, r2, inv, mod);
}
static inline void out_mint_64(Montgomery64 A, Montgomery64 inv, u64 mod) {
  u64 a = _from_montgomery_64(A, inv, mod);
  if (a >= 10) outu(a / 10);
  putchar_unlocked(a - a / 10 * 10 + 48);
}


bool miller_rabin32(u32 n, u32 d, const u32 *bases, FastInt bases_len, Montgomery r2, Montgomery inv, Montgomery one, Montgomery rev) {
  for (FastInt i = 0; i < bases_len; i++) {
    if (n <= bases[i]) break;
    Montgomery a = _to_montgomery(bases[i], r2, inv, n);
    u32 t = d;
    Montgomery y = pow_MR(a, t, inv, n);
    while (t != n - 1 && y != one && y != rev) {
      y = mul_MR(y, y, inv, n);
      t <<= 1;
    }
    if (y != rev && (!(t & 1))) return false;
  }
  return true;
}
bool is_prime32(u32 n) {
  u32 m = n - 1;
  Montgomery r2 = _r2(n);
  Montgomery inv = _inv(n);
  Montgomery one = _one(n);
  Montgomery rev = _to_montgomery(m, r2, inv, n);
  u32 d = m >> CTZ(m);
  const u32 bases1[] = { 2u };
  const u32 bases2[] = { 2u, 3u };
  const u32 bases3[] = { 2u, 7u, 61u };
  if (n < 2047u) { return miller_rabin32(n, d, bases1, 1, r2, inv, one, rev); }
  if (n < 1373653u) { return miller_rabin32(n, d, bases2, 2, r2, inv, one, rev); }
  return miller_rabin32(n, d, bases3, 3, r2, inv, one, rev);
}
bool miller_rabin64(u64 n, u64 d, const u64 *bases, FastInt bases_len, Montgomery64 r2, Montgomery64 inv, Montgomery64 one, Montgomery64 rev) {
  for (FastInt i = 0; i < bases_len; i++) {
    if (n <= bases[i]) break;
    Montgomery64 a = _to_montgomery_64(bases[i], r2, inv, n);
    u64 t = d;
    Montgomery64 y = pow_MR_64(a, t, inv, n);
    while (t != n - 1 && y != one && y != rev) {
      y = mul_MR_64(y, y, inv, n);
      t <<= 1;
    }
    if (y != rev && (!(t & 1))) return false;
  }
  return true;
}
bool is_prime64(u64 n) {
  u64 m = n - 1;
  Montgomery64 r2 = _r2_64(n);
  Montgomery64 inv = _inv_64(n);
  Montgomery64 one = _one_64(n);
  Montgomery64 rev = _to_montgomery_64(m, r2, inv, n);
  u64 d = m >> CTZ(m);
  const u64 bases4[] = { 2ull, 13ull, 23ull, 1662803ull };
  const u64 bases5[] = { 2ull, 3ull, 5ull, 7ull, 11ull };
  const u64 bases6[] = { 2ull, 3ull, 5ull, 7ull, 11ull, 13ull };
  const u64 bases7[] = { 2ull, 3ull, 5ull, 7ull, 11ull, 13ull, 17ull };
  const u64 bases8[] = { 2ull, 325ull, 9375ull, 28178ull, 450775ull, 9780504ull, 1795265022ull };
  if (n < 1122004669633ull) { return miller_rabin64(n, d, bases4, 4, r2, inv, one, rev); }
  if (n < 2152302898747ull) { return miller_rabin64(n, d, bases5, 5, r2, inv, one, rev); }
  if (n < 3474749660383ull) { return miller_rabin64(n, d, bases6, 6, r2, inv, one, rev); }
  if (n < 341550071728321ull) { return miller_rabin64(n, d, bases7, 7, r2, inv, one, rev); }
  return miller_rabin64(n, d, bases8, 7, r2, inv, one, rev);
}
bool is_prime(u64 n) {
  if (n <= 3u) return n == 2u || n == 3u;
  if (!(n & 1)) return false;
  if (n < ((u32)1u << 31)) {
    return is_prime32((u32)n);
  }
  return is_prime64(n);
}

void Main(void) {
  FastInt Q = read_int();
  while (Q--) {
    u64 x = inu();
    outu(x); SP(); outu(is_prime(x));
    NL();
  }
}

int main(void) {
  Main();
  return 0;
}
0