結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
nonamae
|
| 提出日時 | 2021-10-14 09:52:09 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 29 ms / 9,973 ms |
| コード長 | 9,339 bytes |
| コンパイル時間 | 577 ms |
| コンパイル使用メモリ | 40,704 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-16 23:40:55 |
| 合計ジャッジ時間 | 1,234 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
コンパイルメッセージ
main.c: In function 'read_i32':
main.c:40:16: warning: implicit declaration of function 'getchar_unlocked' [-Wimplicit-function-declaration]
40 | while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
| ^~~~~~~~~~~~~~~~
main.c: In function '_write_i32':
main.c:49:5: warning: implicit declaration of function 'putchar_unlocked' [-Wimplicit-function-declaration]
49 | putchar_unlocked(x - x / 10 * 10 + 48);
| ^~~~~~~~~~~~~~~~
ソースコード
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("fast-math")
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <time.h>
/* signed integer */
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
typedef __int128_t i128;
/* unsigned integer */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef __uint128_t u128;
/* floating point number */
typedef float f32;
typedef double f64;
typedef long double f80;
/* io */
// -2147483648 ~ 2147483647 (> 10 ^ 9)
int read_i32(void) {
int c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
static inline void _write_i32(int x) {
if (x >= 10) _write_i32(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void write_i32(int x) {
if (x < 0) {
putchar_unlocked('-');
x = -x;
}
_write_i32(x);
}
// -9223372036854775808 ~ 9223372036854775807 (> 10 ^ 18)
i64 read_i64(void) {
i64 c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
static inline void _write_i64(i64 x) {
if (x >= 10) _write_i64(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void write_i64(i64 x) {
if (x < 0) {
putchar_unlocked('-');
x = -x;
}
_write_i64(x);
}
// 0 ~ 4294967295 (> 10 ^ 9)
u32 in(void) {
u32 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return x;
}
void out(u32 a) {
if (a >= 10) out(a / 10);
putchar_unlocked(a - a / 10 * 10 + 48);
}
// 0 ~ 18446744073709551615 (> 10 ^ 19)
u64 in64(void) {
u64 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return x;
}
void out64(u64 a) {
if (a >= 10) out64(a / 10);
putchar_unlocked(a - a / 10 * 10 + 48);
}
static inline void NL(void) { putchar_unlocked('\n'); }
static inline void SP(void) { putchar_unlocked(' '); }
#ifdef DEBUG
void out_bit(u64 n) {
u64 mask = (u64)1ull << (sizeof(n) * CHAR_BIT - 1);
putchar_unlocked('0');
putchar_unlocked('b');
do {
putchar_unlocked(mask & n ? '1' : '0');
}
while (mask >>= 1);
}
#endif
/* macro */
#define SWAP(a, b) (((a)^=(b)),((b)^=(a)),((a)^=(b)))
#define MAX(a, b) ((a)>(b)?(a):(b))
#define MIN(a, b) ((a)<(b)?(a):(b))
#define REP(i,a,b) for(int i=(a), i##_len=(b);i<i##_len;++i)
#define FOR(i,n) REP(i,0,(n))
#define LOOP(n) FOR(i,n)
/* bit macro */
#define POPCNT(a) __builtin_popcountll((a))
#define CTZ(a) __builtin_ctzll((a))
#define CLZ(a) __builtin_clzll((a))
#define LSBit(a) ((a)&(-(a)))
#define CLSBit(a) ((a)&((a)-(1)))
#define HAS_SINGLE_BIT(a) (POPCNT((a))==1)
#define BIT_CEIL(a) ((!(a))?(1):((POPCNT(a))==(1)?((1ull)<<((63)-CLZ((a)))):((1ull)<<((64)-CLZ(a)))))
#define BIT_FLOOR(a) ((!(a))?(0):((1ull)<<((63)-CLZ((a)))))
#define BIT_WIDTH(a) ((a)?((64)-CLZ((a))):(0))
#define _ROTL(x, s) (((x)<<((s)%(64)))|(((x)>>((64)-((s)%(64))))))
#define _ROTR(x, s) (((x)>>((s)%(64)))|(((x)<<((64)-((s)%(64))))))
#define ROTL(x, s) (((s)==(0))?(0):((((i128)(s))<(0))?(_ROTR((x),-(s))):(_ROTL((x),(s)))))
#define ROTR(x, s) (((s)==(0))?(0):((((i128)(s))<(0))?(_ROTL((x),-(s))):(_ROTR((x),(s)))))
/* montgomery modular multiplication 32-bit */
typedef uint32_t m32;
m32 _one(u32 mod) {
return -1u % mod + 1;
}
m32 _r2(u32 mod) {
return (u64)(i64)-1 % mod + 1;
}
m32 _inv(u32 mod) {
u32 inv = mod;
LOOP(__builtin_ctz(sizeof(u32) * 8) - 1) inv *= 2 - mod * inv;
return inv;
}
m32 _reduce(u64 a, m32 inv, u32 mod) {
i32 z = (a >> 32) - ((((u32)a * inv) * (u64)mod) >> 32);
return z < 0 ? z + mod : (u64)z;
}
m32 to_m32(u32 a, m32 r2, m32 inv, u32 mod) {
return _reduce((u64)a * r2, inv, mod);
}
u32 from_m32(m32 A, m32 inv, u32 mod) {
m32 t = _reduce((u64)A, inv, mod) - mod;
return t + (mod & -(t >> 31u));
}
m32 add_MR(m32 A, m32 B, u32 mod) {
A += B - (mod << 1u);
A += (mod << 1u) & -(A >> 31u);
return A;
}
m32 sub_MR(m32 A, m32 B, u32 mod) {
A -= B;
A += (mod << 1u) & -(A >> 31u);
return A;
}
m32 min_MR(m32 A, u32 mod) {
return sub_MR(0, A, mod);
}
m32 mul_MR(m32 A, m32 B, m32 inv, u32 mod) {
return _reduce((u64)A * B, inv, mod);
}
m32 pow_MR(m32 A, i64 n, m32 inv, u32 mod) {
m32 ret = _one(mod);
while (n > 0) {
if (n & 1) ret = mul_MR(ret, A, inv, mod);
A = mul_MR(A, A, inv, mod);
n >>= 1;
}
return ret;
}
m32 inv_MR(m32 A, m32 inv, u32 mod) {
return pow_MR(A, (i64)mod - 2, inv, mod);
}
m32 div_MR(m32 A, m32 B, m32 inv, u32 mod) {
/* assert(is_prime(mod)); */
return mul_MR(A, inv_MR(B, inv, mod), inv, mod);
}
m32 in_MR(m32 r2, m32 inv, u32 mod) {
u32 c, a = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
a = a * 10 + c - 48;
c = getchar_unlocked();
}
return to_m32(a, r2, inv, mod);
}
void out_MR(m32 A, m32 inv, u32 mod) {
u32 a = from_m32(A, inv, mod);
out(a);
}
/* montgomery modular multiplication 64-bit */
typedef uint64_t m64;
m64 _one_64(u64 mod) {
return -1ull % mod + 1;
}
m64 _r2_64(u64 mod) {
return (u128)(i128)-1 % mod + 1;
}
m64 _inv_64(u64 mod) {
u64 inv = mod;
LOOP(__builtin_ctz(sizeof(u64) * 8) - 1) inv *= 2 - mod * inv;
return inv;
}
m64 _reduce_64(u128 a, m64 inv, u64 mod) {
i64 A = (a >> 64) - ((((u64)a * inv) * (u128)mod) >> 64);
return A < 0 ? A + mod : (u64)A;
}
m64 to_m64(u64 a, m64 r2, m64 inv, u64 mod) {
return _reduce_64((u128)a * r2, inv, mod);
}
u64 from_m64(m64 A, m64 inv, u64 mod) {
m64 t = _reduce_64((u128)A, inv, mod) - mod;
return t + (mod & -(t >> 63u));
}
m64 add_MR_64(m64 A, m64 B, u64 mod) {
A += B - (mod << 1u);
A += (mod << 1u) & -(A >> 63u);
return A;
}
m64 sub_MR_64(m64 A, m64 B, u64 mod) {
A -= B;
A += (mod << 1u) & -(A >> 63u);
return A;
}
m64 min_MR_64(m64 A, u64 mod) {
return sub_MR_64(0, A, mod);
}
m64 mul_MR_64(m64 A, m64 B, m64 inv, u64 mod) {
return _reduce_64((u128)A * B, inv, mod);
}
m64 pow_MR_64(m64 A, i64 n, m64 inv, u64 mod) {
m64 ret = _one_64(mod);
while (n > 0) {
if (n & 1) ret = mul_MR_64(ret, A, inv, mod);
A = mul_MR_64(A, A, inv, mod);
n >>= 1;
}
return ret;
}
m64 inv_MR_64(m64 A, m64 inv, u64 mod) {
return pow_MR_64(A, (i64)mod - 2, inv, mod);
}
m64 div_MR_64(m64 A, m64 B, m64 inv, u64 mod) {
/* assert(is_prime(mod)); */
return mul_MR_64(A, inv_MR_64(B, inv, mod), inv, mod);
}
m64 in_MR_64(m64 r2, m64 inv, u64 mod) {
u64 c, a = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
a = a * 10 + c - 48;
c = getchar_unlocked();
}
return to_m64(a, r2, inv, mod);
}
void out_MR_64(m64 A, m64 inv, u64 mod) {
u64 a = from_m64(A, inv, mod);
out(a);
}
/* miller_rabin primary test */
bool miller_rabin32(u32 n, u32 d, const u32 *bases, int bases_len, m32 r2, m32 inv, m32 one, m32 rev) {
FOR(i, bases_len) {
if (n <= bases[i]) break;
m32 a = to_m32(bases[i], r2, inv, n);
u32 t = d;
m32 y = pow_MR(a, t, inv, n);
while (t != n - 1 && y != one && y != rev) {
y = mul_MR(y, y, inv, n);
t <<= 1;
}
if (y != rev && (!(t & 1))) return false;
}
return true;
}
bool is_prime32(u32 n) {
u32 m = n - 1;
m32 r2 = _r2(n);
m32 inv = _inv(n);
m32 one = _one(n);
m32 rev = to_m32(m, r2, inv, n);
u32 d = m >> CTZ(m);
const u32 bases[] = { 2u, 7u, 61u };
return miller_rabin32(n, d, bases, 3, r2, inv, one, rev);
}
bool miller_rabin64(u64 n, u64 d, const u64 *bases, int bases_len, m64 r2, m64 inv, m64 one, m64 rev) {
FOR(i, bases_len) {
if (n <= bases[i]) break;
m64 a = to_m64(bases[i], r2, inv, n);
u64 t = d;
m64 y = pow_MR_64(a, t, inv, n);
while (t != n - 1 && y != one && y != rev) {
y = mul_MR_64(y, y, inv, n);
t <<= 1;
}
if (y != rev && (!(t & 1))) return false;
}
return true;
}
bool is_prime64(u64 n) {
u64 m = n - 1;
m64 r2 = _r2_64(n);
m64 inv = _inv_64(n);
m64 one = _one_64(n);
m64 rev = to_m64(m, r2, inv, n);
u64 d = m >> CTZ(m);
const u64 bases[] = { 2ull, 325ull, 9375ull, 28178ull, 450775ull, 9780504ull, 1795265022ull };
return miller_rabin64(n, d, bases, 7, r2, inv, one, rev);
}
bool is_prime(u64 n) {
if (n <= 3u) return n == 2u || n == 3u;
if (!(n & 1)) return false;
if (n < ((u32)1u << 31))
return is_prime32((u32)n);
return is_prime64(n);
}
void Main(void) {
int q = read_i32();
LOOP(q) {
u64 x = in64();
out64(x); SP(); out(is_prime(x));
NL();
}
}
int main() {
Main();
return 0;
}
nonamae