結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | nonamae |
提出日時 | 2021-10-15 06:09:30 |
言語 | C (gcc 12.3.0) |
結果 |
AC
|
実行時間 | 26 ms / 9,973 ms |
コード長 | 9,365 bytes |
コンパイル時間 | 856 ms |
コンパイル使用メモリ | 40,192 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-11-16 23:40:56 |
合計ジャッジ時間 | 1,160 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 16 ms
5,248 KB |
testcase_05 | AC | 16 ms
5,248 KB |
testcase_06 | AC | 8 ms
5,248 KB |
testcase_07 | AC | 8 ms
5,248 KB |
testcase_08 | AC | 8 ms
5,248 KB |
testcase_09 | AC | 26 ms
5,248 KB |
コンパイルメッセージ
main.c: In function 'read_int': main.c:39:16: warning: implicit declaration of function 'getchar_unlocked' [-Wimplicit-function-declaration] 39 | while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f; | ^~~~~~~~~~~~~~~~ main.c: In function '_write_int': main.c:78:5: warning: implicit declaration of function 'putchar_unlocked' [-Wimplicit-function-declaration] 78 | putchar_unlocked(x - x / 10 * 10 + 48); | ^~~~~~~~~~~~~~~~
ソースコード
#pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") #pragma GCC optimize("fast-math") #include <stdbool.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <assert.h> #include <limits.h> #include <math.h> #include <string.h> #include <time.h> /* signed integer */ typedef int8_t i8; typedef int16_t i16; typedef int32_t i32; typedef int64_t i64; typedef __int128_t i128; /* unsigned integer */ typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; typedef __uint128_t u128; /* floating point number */ typedef float f32; typedef double f64; typedef long double f80; /* io */ static inline int read_int(void) { // -2147483648 ~ 2147483647 (> 10 ^ 9) int c, x = 0, f = 1; while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f; while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return f * x; } static inline u32 in_u32(void) { // 0 ~ 4294967295 (> 10 ^ 9) u64 c, x = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return x; } static inline i64 in_i64(void) { // -9223372036854775808 ~ 9223372036854775807 (> 10 ^ 18) i64 c, x = 0, f = 1; while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f; while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return f * x; } static inline u64 in_u64(void) { // 0 ~ 18446744073709551615 (> 10 ^ 19) u64 c, x = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { x = x * 10 + c - 48; c = getchar_unlocked(); } return x; } static inline void _write_int(int x) { if (x >= 10) _write_int(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } static inline void write_int(int x) { if (x < 0) { putchar_unlocked('-'); x = -x; } _write_int(x); } static inline void out_u32(u32 x) { if (x >= 10) out_u32(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } static inline void _out_i64(i64 x) { if (x >= 10) _out_i64(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } static inline void out_i64(i64 x) { if (x < 0) { putchar_unlocked('-'); x = -x; } _out_i64(x); } static inline void out_u64(u64 x) { if (x >= 10) out_u64(x / 10); putchar_unlocked(x - x / 10 * 10 + 48); } static inline void NL(void) { putchar_unlocked('\n'); } static inline void SP(void) { putchar_unlocked(' '); } /* macro */ #define SWAP(a, b) (((a)^=(b)),((b)^=(a)),((a)^=(b))) #define MAX(a, b) ((a)>(b)?(a):(b)) #define MIN(a, b) ((a)<(b)?(a):(b)) #define REP(i,a,b) for(int i=(a), i##_len=(b);i<i##_len;++i) #define FOR(i,n) REP(i,0,(n)) #define LOOP(n) FOR(i,n) /* bit macro */ #define POPCNT(a) __builtin_popcountll((a)) #define CTZ(a) __builtin_ctzll((a)) #define CLZ(a) __builtin_clzll((a)) #define LSBit(a) ((a)&(-(a))) #define CLSBit(a) ((a)&((a)-(1))) #define HAS_SINGLE_BIT(a) (POPCNT((a))==1) #define BIT_CEIL(a) ((!(a))?(1):((POPCNT(a))==(1)?((1ull)<<((63)-CLZ((a)))):((1ull)<<((64)-CLZ(a))))) #define BIT_FLOOR(a) ((!(a))?(0):((1ull)<<((63)-CLZ((a))))) #define BIT_WIDTH(a) ((a)?((64)-CLZ((a))):(0)) #define _ROTL(x, s) (((x)<<((s)%(64)))|(((x)>>((64)-((s)%(64)))))) #define _ROTR(x, s) (((x)>>((s)%(64)))|(((x)<<((64)-((s)%(64)))))) #define ROTL(x, s) (((s)==(0))?(0):((((i128)(s))<(0))?(_ROTR((x),-(s))):(_ROTL((x),(s))))) #define ROTR(x, s) (((s)==(0))?(0):((((i128)(s))<(0))?(_ROTL((x),-(s))):(_ROTR((x),(s))))) /* montgomery modular multiplication 32-bit */ typedef uint32_t m32; m32 _one(u32 mod) { return -1u % mod + 1; } m32 _r2(u32 mod) { return (u64)(i64)-1 % mod + 1; } m32 _inv(u32 mod) { u32 inv = mod; LOOP(__builtin_ctz(sizeof(u32) * 8) - 1) inv *= 2 - mod * inv; return inv; } m32 _reduce(u64 a, m32 inv, u32 mod) { i32 z = (a >> 32) - ((((u32)a * inv) * (u64)mod) >> 32); return z < 0 ? z + mod : (u64)z; } m32 to_m32(u32 a, m32 r2, m32 inv, u32 mod) { return _reduce((u64)a * r2, inv, mod); } u32 from_m32(m32 A, m32 inv, u32 mod) { m32 t = _reduce((u64)A, inv, mod) - mod; return t + (mod & -(t >> 31u)); } m32 add_MR(m32 A, m32 B, u32 mod) { A += B - (mod << 1u); A += (mod << 1u) & -(A >> 31u); return A; } m32 sub_MR(m32 A, m32 B, u32 mod) { A -= B; A += (mod << 1u) & -(A >> 31u); return A; } m32 min_MR(m32 A, u32 mod) { return sub_MR(0, A, mod); } m32 mul_MR(m32 A, m32 B, m32 inv, u32 mod) { return _reduce((u64)A * B, inv, mod); } m32 pow_MR(m32 A, i64 n, m32 inv, u32 mod) { m32 ret = _one(mod); while (n > 0) { if (n & 1) ret = mul_MR(ret, A, inv, mod); A = mul_MR(A, A, inv, mod); n >>= 1; } return ret; } m32 inv_MR(m32 A, m32 inv, u32 mod) { return pow_MR(A, (i64)mod - 2, inv, mod); } m32 div_MR(m32 A, m32 B, m32 inv, u32 mod) { /* assert(is_prime(mod)); */ return mul_MR(A, inv_MR(B, inv, mod), inv, mod); } m32 in_MR(m32 r2, m32 inv, u32 mod) { u32 c, a = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { a = a * 10 + c - 48; c = getchar_unlocked(); } return to_m32(a, r2, inv, mod); } void out_MR(m32 A, m32 inv, u32 mod) { u32 a = from_m32(A, inv, mod); out_u32(a); } /* montgomery modular multiplication 64-bit */ typedef uint64_t m64; m64 _one_64(u64 mod) { return -1ull % mod + 1; } m64 _r2_64(u64 mod) { return (u128)(i128)-1 % mod + 1; } m64 _inv_64(u64 mod) { u64 inv = mod; LOOP(__builtin_ctz(sizeof(u64) * 8) - 1) inv *= 2 - mod * inv; return inv; } m64 _reduce_64(u128 a, m64 inv, u64 mod) { i64 A = (a >> 64) - ((((u64)a * inv) * (u128)mod) >> 64); return A < 0 ? A + mod : (u64)A; } m64 to_m64(u64 a, m64 r2, m64 inv, u64 mod) { return _reduce_64((u128)a * r2, inv, mod); } u64 from_m64(m64 A, m64 inv, u64 mod) { m64 t = _reduce_64((u128)A, inv, mod) - mod; return t + (mod & -(t >> 63u)); } m64 add_MR_64(m64 A, m64 B, u64 mod) { A += B - (mod << 1u); A += (mod << 1u) & -(A >> 63u); return A; } m64 sub_MR_64(m64 A, m64 B, u64 mod) { A -= B; A += (mod << 1u) & -(A >> 63u); return A; } m64 min_MR_64(m64 A, u64 mod) { return sub_MR_64(0, A, mod); } m64 mul_MR_64(m64 A, m64 B, m64 inv, u64 mod) { return _reduce_64((u128)A * B, inv, mod); } m64 pow_MR_64(m64 A, i64 n, m64 inv, u64 mod) { m64 ret = _one_64(mod); while (n > 0) { if (n & 1) ret = mul_MR_64(ret, A, inv, mod); A = mul_MR_64(A, A, inv, mod); n >>= 1; } return ret; } m64 inv_MR_64(m64 A, m64 inv, u64 mod) { return pow_MR_64(A, (i64)mod - 2, inv, mod); } m64 div_MR_64(m64 A, m64 B, m64 inv, u64 mod) { /* assert(is_prime(mod)); */ return mul_MR_64(A, inv_MR_64(B, inv, mod), inv, mod); } m64 in_MR_64(m64 r2, m64 inv, u64 mod) { u64 c, a = 0; while (c = getchar_unlocked(), c < 48 || c > 57); while (47 < c && c < 58) { a = a * 10 + c - 48; c = getchar_unlocked(); } return to_m64(a, r2, inv, mod); } void out_MR_64(m64 A, m64 inv, u64 mod) { u64 a = from_m64(A, inv, mod); out_u64(a); } /* miller-rabin primary test */ bool miller_rabin32(u32 n, u32 d, const u32 *bases, int bases_len, m32 r2, m32 inv, m32 one, m32 rev) { FOR(i, bases_len) { if (n <= bases[i]) break; m32 a = to_m32(bases[i], r2, inv, n); u32 t = d; m32 y = pow_MR(a, t, inv, n); while (t != n - 1 && y != one && y != rev) { y = mul_MR(y, y, inv, n); t <<= 1; } if (y != rev && (!(t & 1))) return false; } return true; } bool is_prime32(u32 n) { u32 m = n - 1; m32 r2 = _r2(n); m32 inv = _inv(n); m32 one = _one(n); m32 rev = to_m32(m, r2, inv, n); u32 d = m >> CTZ(m); const u32 bases[] = { 2u, 7u, 61u }; return miller_rabin32(n, d, bases, 3, r2, inv, one, rev); } bool miller_rabin64(u64 n, u64 d, const u64 *bases, int bases_len, m64 r2, m64 inv, m64 one, m64 rev) { FOR(i, bases_len) { if (n <= bases[i]) break; m64 a = to_m64(bases[i], r2, inv, n); u64 t = d; m64 y = pow_MR_64(a, t, inv, n); while (t != n - 1 && y != one && y != rev) { y = mul_MR_64(y, y, inv, n); t <<= 1; } if (y != rev && (!(t & 1))) return false; } return true; } bool is_prime64(u64 n) { u64 m = n - 1; m64 r2 = _r2_64(n); m64 inv = _inv_64(n); m64 one = _one_64(n); m64 rev = to_m64(m, r2, inv, n); u64 d = m >> CTZ(m); const u64 bases[] = { 2ull, 325ull, 9375ull, 28178ull, 450775ull, 9780504ull, 1795265022ull }; return miller_rabin64(n, d, bases, 7, r2, inv, one, rev); } bool is_prime(u64 n) { if (n <= 3u) return n == 2u || n == 3u; if (!(n & 1)) return false; if (n < ((u32)1u << 31)) return is_prime32((u32)n); return is_prime64(n); } void Main(void) { int Q = read_int(); LOOP(Q) { u64 x = in_u64(); out_u64(x); SP(); write_int(is_prime(x)); NL(); } } int main(void) { Main(); return 0; }