結果

問題 No.1480 Many Complete Graphs
ユーザー koba-e964
提出日時 2021-10-15 09:27:43
言語 Rust
(1.83.0 + proconio)
結果
AC  
実行時間 68 ms / 2,000 ms
コード長 2,988 bytes
コンパイル時間 12,754 ms
コンパイル使用メモリ 401,416 KB
実行使用メモリ 18,308 KB
最終ジャッジ日時 2024-09-17 16:46:09
合計ジャッジ時間 15,991 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 57
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::Read;
#[allow(dead_code)]
fn getline() -> String {
let mut ret = String::new();
std::io::stdin().read_line(&mut ret).ok().unwrap();
ret
}
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
/*
* Dijkstra's algorithm.
* Verified by: AtCoder ABC164 (https://atcoder.jp/contests/abc164/submissions/12423853)
*/
struct Dijkstra {
edges: Vec<Vec<(usize, i64)>>, // adjacent list representation
}
impl Dijkstra {
fn new(n: usize) -> Self {
Dijkstra { edges: vec![Vec::new(); n] }
}
fn add_edge(&mut self, from: usize, to: usize, cost: i64) {
self.edges[from].push((to, cost));
}
/*
* This function returns a Vec consisting of the distances from vertex source.
*/
fn solve(&self, source: usize, inf: i64) -> Vec<i64> {
let n = self.edges.len();
let mut d = vec![inf; n];
// que holds (-distance, vertex), so that que.pop() returns the nearest element.
let mut que = std::collections::BinaryHeap::new();
que.push((0, source));
while let Some((cost, pos)) = que.pop() {
let cost = -cost;
if d[pos] <= cost {
continue;
}
d[pos] = cost;
for &(w, c) in &self.edges[pos] {
let newcost = cost + c;
if d[w] > newcost {
d[w] = newcost + 1;
que.push((-newcost, w));
}
}
}
return d;
}
}
fn main() {
let n: usize = get();
let m: usize = get();
let mut dijk = Dijkstra::new(n + 2 * m);
for i in 0..m {
let k: usize = get();
let c: i64 = get();
let s: Vec<usize> = (0..k).map(|_| get()).collect();
for &s in &s {
if s % 2 == 0 {
dijk.add_edge(s - 1, n + 2 * i, s as i64 / 2 + c);
dijk.add_edge(n + 2 * i, s - 1, s as i64 / 2);
} else {
dijk.add_edge(s - 1, n + 2 * i + 1, s as i64 / 2 + c);
dijk.add_edge(n + 2 * i, s - 1, s as i64 / 2 + 1);
}
dijk.add_edge(n + 2 * i + 1, s - 1, s as i64 / 2 + 1);
}
}
const INF: i64 = 1 << 50;
let sol = dijk.solve(0, INF);
println!("{}", if sol[n - 1] >= INF { -1 } else { sol[n - 1] });
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0