結果
問題 | No.1480 Many Complete Graphs |
ユーザー |
|
提出日時 | 2021-10-15 09:28:00 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 88 ms / 2,000 ms |
コード長 | 2,751 bytes |
コンパイル時間 | 12,400 ms |
コンパイル使用メモリ | 401,904 KB |
実行使用メモリ | 18,256 KB |
最終ジャッジ日時 | 2024-09-17 16:46:26 |
合計ジャッジ時間 | 16,538 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 57 |
ソースコード
use std::io::Read;fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}#[allow(dead_code)]fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/** Dijkstra's algorithm.* Verified by: AtCoder ABC164 (https://atcoder.jp/contests/abc164/submissions/12423853)*/struct Dijkstra {edges: Vec<Vec<(usize, i64)>>, // adjacent list representation}impl Dijkstra {fn new(n: usize) -> Self {Dijkstra { edges: vec![Vec::new(); n] }}fn add_edge(&mut self, from: usize, to: usize, cost: i64) {self.edges[from].push((to, cost));}/** This function returns a Vec consisting of the distances from vertex source.*/fn solve(&self, source: usize, inf: i64) -> Vec<i64> {let n = self.edges.len();let mut d = vec![inf; n];// que holds (-distance, vertex), so that que.pop() returns the nearest element.let mut que = std::collections::BinaryHeap::new();que.push((0, source));while let Some((cost, pos)) = que.pop() {let cost = -cost;if d[pos] <= cost {continue;}d[pos] = cost;for &(w, c) in &self.edges[pos] {let newcost = cost + c;if d[w] > newcost {d[w] = newcost + 1;que.push((-newcost, w));}}}return d;}}fn main() {let n: usize = get();let m: usize = get();let mut dijk = Dijkstra::new(n + 2 * m);for i in 0..m {let k: usize = get();let c: i64 = get();let s: Vec<usize> = (0..k).map(|_| get()).collect();for &s in &s {if s % 2 == 0 {dijk.add_edge(s - 1, n + 2 * i, s as i64 / 2 + c);dijk.add_edge(n + 2 * i, s - 1, s as i64 / 2);} else {dijk.add_edge(s - 1, n + 2 * i + 1, s as i64 / 2 + c);dijk.add_edge(n + 2 * i, s - 1, s as i64 / 2 + 1);}dijk.add_edge(n + 2 * i + 1, s - 1, s as i64 / 2 + 1);}}const INF: i64 = 1 << 50;let sol = dijk.solve(0, INF);println!("{}", if sol[n - 1] >= INF { -1 } else { sol[n - 1] });}