結果
| 問題 |
No.650 行列木クエリ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-10-16 15:11:01 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 104 ms / 2,000 ms |
| コード長 | 13,238 bytes |
| コンパイル時間 | 11,459 ms |
| コンパイル使用メモリ | 401,536 KB |
| 実行使用メモリ | 43,056 KB |
| 最終ジャッジ日時 | 2024-09-17 19:27:00 |
| 合計ジャッジ時間 | 13,890 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 10 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
use std::io::Read;
#[allow(dead_code)]
fn getline() -> String {
let mut ret = String::new();
std::io::stdin().read_line(&mut ret).ok().unwrap();
ret
}
fn get_word() -> String {
let stdin = std::io::stdin();
let mut stdin=stdin.lock();
let mut u8b: [u8; 1] = [0];
loop {
let mut buf: Vec<u8> = Vec::with_capacity(16);
loop {
let res = stdin.read(&mut u8b);
if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {
break;
} else {
buf.push(u8b[0]);
}
}
if buf.len() >= 1 {
let ret = String::from_utf8(buf).unwrap();
return ret;
}
}
}
#[allow(dead_code)]
fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }
// https://ei1333.github.io/luzhiled/snippets/tree/heavy-light-decomposition.html
// Verified by: NUPC2017 H
// https://atcoder.jp/contests/njpc2017/submissions/23535017
struct HLDecomp {
euler: Vec<usize>,
head: Vec<usize>,
rev: Vec<usize>,
par: Vec<usize>,
}
impl HLDecomp {
fn dfs_sz(v: usize, p: usize, g: &mut [Vec<usize>], sz: &mut [usize],
par: &mut [usize]) {
par[v] = p;
sz[v] = 1;
if g[v].get(0) == Some(&p) {
let last = g[v].len() - 1;
g[v].swap(0, last);
}
for i in 0..g[v].len() {
let to = g[v][i];
if to == p {
continue;
}
Self::dfs_sz(to, v, g, sz, par);
sz[v] += sz[to];
if sz[g[v][0]] < sz[to] {
g[v].swap(0, i);
}
}
}
fn dfs_euler(v: usize, par: usize, g: &[Vec<usize>],
euler: &mut [usize], count: &mut usize,
head: &mut [usize], rev: &mut [usize]) {
euler[v] = *count;
*count += 1;
rev[euler[v]] = v;
for &to in &g[v] {
if to == par {
continue;
}
head[to] = if g[v][0] == to { head[v] } else { to };
Self::dfs_euler(to, v, g, euler, count, head, rev);
}
}
pub fn new(g: &[Vec<usize>]) -> Self {
let mut g = g.to_vec();
let n = g.len();
let mut sz = vec![0; n];
let mut par = vec![0; n];
Self::dfs_sz(0, n, &mut g, &mut sz, &mut par);
let mut euler = vec![0; n];
let mut count = 0;
let mut head = vec![0; n];
let mut rev = vec![0; n];
Self::dfs_euler(0, n, &g, &mut euler, &mut count, &mut head, &mut rev);
HLDecomp {
euler: euler,
head: head,
rev: rev,
par: par,
}
}
#[allow(unused)]
pub fn get_id(&self, v: usize) -> usize {
self.euler[v]
}
#[allow(unused)]
pub fn from_id(&self, id: usize) -> usize {
self.rev[id]
}
// M: commutative
// M must not panic.
#[allow(unused)]
pub fn query<T, F: FnMut(usize, usize) -> T, M: Fn(T, T) -> T>(&self, mut u: usize, mut v: usize, mut f: F, mut m: M, e: T, edge: bool) -> T {
let mut ans = e;
self.divide(u, v, |l, r| {
let ptr: *mut T = &mut ans;
unsafe {
let val = f(l, r);
let ans = std::ptr::read(ptr);
std::ptr::write(ptr, m(ans, val))
}
}, edge);
ans
}
pub fn divide<F: FnMut(usize, usize)>(&self, mut u: usize, mut v: usize, mut f: F, edge: bool) {
let euler = &self.euler;
let head = &self.head;
loop {
if euler[u] > euler[v] {
std::mem::swap(&mut u, &mut v);
}
if head[u] == head[v] {
break;
}
f(euler[head[v]], euler[v] + 1);
v = self.par[head[v]];
}
f(euler[u] + if edge { 1 } else { 0 }, euler[v] + 1);
}
}
/**
* Segment Tree. This data structure is useful for fast folding on intervals of an array
* whose elements are elements of monoid I. Note that constructing this tree requires the identity
* element of I and the operation of I.
* Verified by: yukicoder No. 259 (http://yukicoder.me/submissions/100581)
* AGC015-E (http://agc015.contest.atcoder.jp/submissions/1461001)
* yukicoder No. 833 (https://yukicoder.me/submissions/703521)
*/
struct SegTree<I, BiOp> {
n: usize,
dat: Vec<I>,
op: BiOp,
e: I,
}
impl<I, BiOp> SegTree<I, BiOp>
where BiOp: Fn(I, I) -> I,
I: Copy {
pub fn new(n_: usize, op: BiOp, e: I) -> Self {
let mut n = 1;
while n < n_ { n *= 2; } // n is a power of 2
SegTree {n: n, dat: vec![e; 2 * n - 1], op: op, e: e}
}
/* ary[k] <- v */
pub fn update(&mut self, idx: usize, v: I) {
let mut k = idx + self.n - 1;
self.dat[k] = v;
while k > 0 {
k = (k - 1) / 2;
self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
}
/* [a, b) (note: half-inclusive)
* http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/ */
#[allow(unused)]
pub fn query(&self, mut a: usize, mut b: usize) -> I {
let mut left = self.e;
let mut right = self.e;
a += self.n - 1;
b += self.n - 1;
while a < b {
if (a & 1) == 0 {
left = (self.op)(left, self.dat[a]);
}
if (b & 1) == 0 {
right = (self.op)(self.dat[b - 1], right);
}
a = a / 2;
b = (b - 1) / 2;
}
(self.op)(left, right)
}
// Port from https://github.com/atcoder/ac-library/blob/master/atcoder/segtree.hpp
#[allow(unused)]
fn max_right<F: Fn(I) -> bool>(
&self, mut l: usize, f: &F,
) -> usize {
assert!(f(self.e));
if l == self.n {
return self.n;
}
l += self.n - 1;
let mut sm = self.e;
loop {
while l % 2 == 1 {
l = (l - 1) / 2;
}
if !f((self.op)(sm, self.dat[l])) {
while l < self.n - 1 {
l = 2 * l + 1;
let val = (self.op)(sm, self.dat[l]);
if f(val) {
sm = val;
l += 1;
}
}
return l + 1 - self.n;
}
sm = (self.op)(sm, self.dat[l]);
l += 1;
if (l + 1).is_power_of_two() { break; }
}
self.n
}
// Port from https://github.com/atcoder/ac-library/blob/master/atcoder/segtree.hpp
#[allow(unused)]
fn min_left<F: Fn(I) -> bool>(
&self, mut r: usize, f: &F,
) -> usize {
if !f(self.e) {
return r + 1;
}
if r == 0 {
return 0;
}
r += self.n - 1;
let mut sm = self.e;
loop {
r -= 1;
while r > 0 && r % 2 == 0 {
r = (r - 1) / 2;
}
if !f((self.op)(self.dat[r], sm)) {
while r < self.n - 1 {
r = 2 * r + 2;
let val = (self.op)(self.dat[r], sm);
if f(val) {
sm = val;
r -= 1;
}
}
return r + 2 - self.n;
}
sm = (self.op)(self.dat[r], sm);
if (r + 1).is_power_of_two() { break; }
}
0
}
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 1_000_000_007;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
fn mul(x: [[MInt; 2]; 2], y: [[MInt; 2]; 2]) -> [[MInt; 2]; 2] {
let mut z = [[MInt::new(0); 2]; 2];
for i in 0..2 {
for j in 0..2 {
for k in 0..2 {
z[i][k] += x[i][j] * y[j][k];
}
}
}
z
}
fn solve() {
let n: usize = get();
let mut g = vec![vec![]; n];
let mut edge = vec![];
for _ in 0..n - 1 {
let a: usize = get();
let b: usize = get();
g[a].push(b);
g[b].push(a);
edge.push((a, b));
}
let mut st = SegTree::new(n, mul, [[MInt::new(1), MInt::new(0)], [MInt::new(0), MInt::new(1)]]);
let hld = HLDecomp::new(&g);
let q: usize = get();
for _ in 0..q {
let ty: String = get_word();
if ty == "x" {
let i: usize = get();
let (a, b) = edge[i];
let mut f = [[MInt::new(0); 2]; 2];
for j in 0..2 {
for k in 0..2 {
let x: i64 = get();
f[j][k] = x.into();
}
}
let mut eidx = n;
hld.divide(a, b, |l, r| if l < r { eidx = l }, true);
st.update(eidx, f);
} else {
let a: usize = get();
let b: usize = get();
let mut tmp = st.e;
hld.divide(a, b, |l, r| tmp = mul(st.query(l, r), tmp), true);
for i in 0..4 {
print!("{}{}", tmp[i / 2][i % 2], if i == 3 { "\n" } else { " " });
}
}
}
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}