結果
問題 | No.621 3 x N グリッド上のドミノの置き方の数 |
ユーザー |
|
提出日時 | 2021-10-16 16:49:42 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 124 ms / 3,000 ms |
コード長 | 6,269 bytes |
コンパイル時間 | 13,156 ms |
コンパイル使用メモリ | 383,028 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-17 19:28:12 |
合計ジャッジ時間 | 20,226 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 66 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;use std::io::Read;#[allow(dead_code)]fn getline() -> String {let mut ret = String::new();std::io::stdin().read_line(&mut ret).ok().unwrap();ret}fn get_word() -> String {let stdin = std::io::stdin();let mut stdin=stdin.lock();let mut u8b: [u8; 1] = [0];loop {let mut buf: Vec<u8> = Vec::with_capacity(16);loop {let res = stdin.read(&mut u8b);if res.unwrap_or(0) == 0 || u8b[0] <= b' ' {break;} else {buf.push(u8b[0]);}}if buf.len() >= 1 {let ret = String::from_utf8(buf).unwrap();return ret;}}}#[allow(dead_code)]fn get<T: std::str::FromStr>() -> T { get_word().parse().ok().unwrap() }/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 1_000_000_007;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// Depends on MInt.rs// Verified by: https://atcoder.jp/contests/abc199/submissions/22259436fn squmul(a: &[Vec<MInt>], b: &[Vec<MInt>]) -> Vec<Vec<MInt>> {let n = a.len();let mut ret = vec![vec![MInt::new(0); n]; n];for i in 0..n {for j in 0..n {for k in 0..n {ret[i][k] += a[i][j] * b[j][k];}}}ret}fn squpow(a: &[Vec<MInt>], mut e: i64) -> Vec<Vec<MInt>> {let n = a.len();let mut sum = vec![vec![MInt::new(0); n]; n];for i in 0..n { sum[i][i] = 1.into(); }let mut cur = a.to_vec();while e > 0 {if e % 2 == 1 {sum = squmul(&sum, &cur);}cur = squmul(&cur, &cur);e /= 2;}sum}fn main() {let n: i64 = get();let mut mat = vec![vec![MInt::new(0); 64]; 64];for pre in 0..8 {for i in 0..8 {for j in 0..8 {if (i & j) != j { continue; }let diff = i ^ j;if (diff & 3) == 3 || (diff & 6) == 6 { continue; }let x = 7 ^ j;for &k in &[0, 3, 6] {if (x & k) == k && (diff & pre) == 0 {mat[8 * i + pre][(7 - j - k) * 8 + (i ^ j)] += 1;}}}}}let ans = squpow(&mat, n);let mut tot = MInt::new(0);for &i in &[0, 1, 2, 4, 5] {for &j in &[0, 1, 2, 4, 5] {if (i & j) == 0 {tot += ans[0][i * 8 + j];}}}println!("{}", tot);}