結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | ecottea |
提出日時 | 2021-10-17 15:54:57 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,263 bytes |
コンパイル時間 | 3,892 ms |
コンパイル使用メモリ | 230,952 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-09-17 19:41:53 |
合計ジャッジ時間 | 4,652 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
ソースコード
#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // 使えるライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = 3.14159265359; const double DEG = PI / 180.; // θ [deg] = θ * DEG [rad] const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi dy4 = { 0, 1, 0, -1 }; const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍 const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 }; const ll INFL = (ll)2e18; const int INF = (int)1e9; const double EPS = 1e-10; // 許容誤差に応じて調整 // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define distance (int)distance #define Yes(b) {cout << ((b) ? "Yes" : "No") << endl;} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順) #define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順) // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 入出力用の >>, << のオーバーロード template <class T, class U> inline istream& operator>> (istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T, class U> inline ostream& operator<< (ostream& os, const pair<T, U>& p) { os << "(" << p.first << "," << p.second << ")"; return os; } template <class T, class U, class V> inline istream& operator>> (istream& is, tuple<T, U, V>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; } template <class T, class U, class V> inline ostream& operator<< (ostream& os, const tuple<T, U, V>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; } template <class T, class U, class V, class W> inline istream& operator>> (istream& is, tuple<T, U, V, W>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; } template <class T, class U, class V, class W> inline ostream& operator<< (ostream& os, const tuple<T, U, V, W>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; } template <class T> inline istream& operator>> (istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline ostream& operator<< (ostream& os, const vector<T>& v) { repe(x, v) os << x << " "; return os; } template <class T> inline ostream& operator<< (ostream& os, const set<T>& s) { repe(x, s) os << x << " "; return os; } template <class T> inline ostream& operator<< (ostream& os, const unordered_set<T>& s) { repe(x, s) os << x << " "; return os; } template <class T, class U> inline ostream& operator<< (ostream& os, const map<T, U>& m) { repe(p, m) os << p << " "; return os; } template <class T, class U> inline ostream& operator<< (ostream& os, const unordered_map<T, U>& m) { repe(p, m) os << p << " "; return os; } template <class T> inline ostream& operator<< (ostream& os, stack<T> s) { while (!s.empty()) { os << s.top() << " "; s.pop(); } return os; } template <class T> inline ostream& operator<< (ostream& os, queue<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop(); } return os; } template <class T> inline ostream& operator<< (ostream& os, deque<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop_front(); } return os; } template <class T> inline ostream& operator<< (ostream& os, priority_queue<T> q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; } // 手元環境(Visual Studio) #ifdef _MSC_VER #define popcount (int)__popcnt // 全ビット中の 1 の個数 #define popcountll (int)__popcnt64 inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed) inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; } inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed) inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; } template <class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; } #define dump(x) cout << "\033[1;36m" << (x) << "\033[0m" << endl; #define dumps(x) cout << "\033[1;36m" << (x) << "\033[0m "; #define dumpel(a) { int i = 0; cout << "\033[1;36m"; repe(x, a) {cout << i++ << ": " << x << endl;} cout << "\033[0m"; } #define input_from_file(f) ifstream isTMP(f); cin.rdbuf(isTMP.rdbuf()); #define output_to_file(f) ofstream osTMP(f); cout.rdbuf(osTMP.rdbuf()); // 提出用(GCC) #else #define popcount (int)__builtin_popcount #define popcountll (int)__builtin_popcountll #define lsb __builtin_ctz #define lsbll __builtin_ctzll #define msb(n) (31 - __builtin_clz(n)) #define msbll(n) (63 - __builtin_clzll(n)) #define gcd __gcd #define dump(x) #define dumps(x) #define dumpel(v) #define input_from_file(f) #define output_to_file(f) #endif #endif // 折りたたみ用 //-----------------AtCoder 専用----------------- #include <atcoder/all> using namespace atcoder; using mint = modint1000000007; //using mint = modint998244353; //using mint = modint; // mint::set_mod(m); template <class S, S(*op)(S, S), S(*e)()>ostream& operator<<(ostream& os, segtree<S, op, e> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; } template <class S, S(*op)(S, S), S(*e)(), class F, S(*mp)(F, S), F(*cp)(F, F), F(*id)()>ostream& operator<<(ostream& os, lazy_segtree<S, op, e, F, mp, cp, id> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; } istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; //---------------------------------------------- //【素数判定/ミラー - ラビン法】 /* * n が素数かを返す. * * 制約 1 ≦ n ≦ 2 × 10^9 + 1000 */ bool miller_rabin(int n) { // 参考 : https://qiita.com/R_olldIce/items/ff38ece900dd41d7178e //【方法】 // p を奇素数とすると,任意の a=[1..p) についてフェルマーの小定理より // a^(p-1) = 1 (mod p) // となる.これの平方根を考えていくと, // p - 1 = 2^s d (d : 奇数) // と表せば, // a^d = 1 (mod p) or ∃r=[0..s), a^(2^r d) = -1 (mod p) // と書き直せる. // // この対偶を用いて判定することをランダムに選んだ a で繰り返す. // n の範囲を限定するなら擬素数を生じない a を固定的に選べる. using mint = modint; const vi as = { 2, 7, 61 }; if (n == 2 || n == 7 || n == 61) return true; if (n == 1 || n % 2 == 0) return false; mint::set_mod(n); int s = 0; ll d = n - 1; while (d % 2 == 0) { s++; d /= 2; } repe(a, as) { mint powa = mint(a).pow(d); if (powa == 1 || powa == -1) goto LOOP_END; rep(r, s - 1) { powa *= powa; if (powa == 1) return false; if (powa == -1) goto LOOP_END; } return false; LOOP_END:; } return true; } int main() { cout << fixed << setprecision(12); // input_from_file("input.txt"); // output_to_file("output.txt"); int n; cin >> n; rep(hoge, n) { int x; cin >> x; //cout << miller_rabin(n) << endl; cout << x << " " << internal::is_prime_constexpr(x) << endl; } }