結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー ecotteaecottea
提出日時 2021-10-17 15:54:57
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 9,263 bytes
コンパイル時間 3,892 ms
コンパイル使用メモリ 230,952 KB
実行使用メモリ 6,948 KB
最終ジャッジ日時 2024-09-17 19:41:53
合計ジャッジ時間 4,652 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// 使えるライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = 3.14159265359;
const double DEG = PI / 180.; // θ [deg] = θ * DEG [rad]
const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi dy4 = { 0, 1, 0, -1 };
const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍
const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 };
const ll INFL = (ll)2e18;	const int INF = (int)1e9;
const double EPS = 1e-10; // 許容誤差に応じて調整

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define distance (int)distance
#define Yes(b) {cout << ((b) ? "Yes" : "No") << endl;}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順)
#define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順)

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)

// 入出力用の >>, << のオーバーロード
template <class T, class U> inline istream& operator>> (istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T, class U> inline ostream& operator<< (ostream& os, const pair<T, U>& p) { os << "(" << p.first << "," << p.second << ")"; return os; }
template <class T, class U, class V> inline istream& operator>> (istream& is, tuple<T, U, V>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; }
template <class T, class U, class V> inline ostream& operator<< (ostream& os, const tuple<T, U, V>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; }
template <class T, class U, class V, class W> inline istream& operator>> (istream& is, tuple<T, U, V, W>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; }
template <class T, class U, class V, class W> inline ostream& operator<< (ostream& os, const tuple<T, U, V, W>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; }
template <class T> inline istream& operator>> (istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline ostream& operator<< (ostream& os, const vector<T>& v) { repe(x, v) os << x << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, const set<T>& s) { repe(x, s) os << x << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, const unordered_set<T>& s) { repe(x, s) os << x << " "; return os; }
template <class T, class U> inline ostream& operator<< (ostream& os, const map<T, U>& m) { repe(p, m) os << p << " "; return os; }
template <class T, class U> inline ostream& operator<< (ostream& os, const unordered_map<T, U>& m) { repe(p, m) os << p << " "; return os; }
template <class T> inline ostream& operator<< (ostream& os, stack<T> s) { while (!s.empty()) { os << s.top() << " "; s.pop(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, queue<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, deque<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop_front(); } return os; }
template <class T> inline ostream& operator<< (ostream& os, priority_queue<T> q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; }

// 手元環境(Visual Studio)
#ifdef _MSC_VER
#define popcount (int)__popcnt // 全ビット中の 1 の個数
#define popcountll (int)__popcnt64
inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed)
inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; }
inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed)
inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; }
template <class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
#define dump(x) cout << "\033[1;36m" << (x) << "\033[0m" << endl;
#define dumps(x) cout << "\033[1;36m" << (x) << "\033[0m ";
#define dumpel(a) { int i = 0; cout << "\033[1;36m"; repe(x, a) {cout << i++ << ": " << x << endl;} cout << "\033[0m"; }
#define input_from_file(f) ifstream isTMP(f); cin.rdbuf(isTMP.rdbuf());
#define output_to_file(f) ofstream osTMP(f); cout.rdbuf(osTMP.rdbuf());
// 提出用(GCC)
#else
#define popcount (int)__builtin_popcount
#define popcountll (int)__builtin_popcountll
#define lsb __builtin_ctz
#define lsbll __builtin_ctzll
#define msb(n) (31 - __builtin_clz(n))
#define msbll(n) (63 - __builtin_clzll(n))
#define gcd __gcd
#define dump(x)
#define dumps(x)
#define dumpel(v)
#define input_from_file(f)
#define output_to_file(f)
#endif

#endif // 折りたたみ用


//-----------------AtCoder 専用-----------------
#include <atcoder/all>
using namespace atcoder;

using mint = modint1000000007;
//using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

template <class S, S(*op)(S, S), S(*e)()>ostream& operator<<(ostream& os, segtree<S, op, e> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; }
template <class S, S(*op)(S, S), S(*e)(), class F, S(*mp)(F, S), F(*cp)(F, F), F(*id)()>ostream& operator<<(ostream& os, lazy_segtree<S, op, e, F, mp, cp, id> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; }
istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>;	using vvm = vector<vm>;		using vvvm = vector<vvm>;
//----------------------------------------------


//【素数判定/ミラー - ラビン法】
/*
* n が素数かを返す.
* 
* 制約 1 ≦ n ≦ 2 × 10^9 + 1000
*/
bool miller_rabin(int n) {
	// 参考 : https://qiita.com/R_olldIce/items/ff38ece900dd41d7178e
	
	//【方法】
	// p を奇素数とすると,任意の a=[1..p) についてフェルマーの小定理より
	//		a^(p-1) = 1 (mod p)
	// となる.これの平方根を考えていくと,
	//		p - 1 = 2^s d (d : 奇数)
	// と表せば,
	//		a^d = 1 (mod p) or ∃r=[0..s), a^(2^r d) = -1 (mod p)
	// と書き直せる.
	// 
	// この対偶を用いて判定することをランダムに選んだ a で繰り返す.
	// n の範囲を限定するなら擬素数を生じない a を固定的に選べる.

	using mint = modint;
	const vi as = { 2, 7, 61 };

	if (n == 2 || n == 7 || n == 61) return true;
	if (n == 1 || n % 2 == 0) return false;

	mint::set_mod(n);
	int s = 0; ll d = n - 1;
	while (d % 2 == 0) {
		s++;
		d /= 2;
	}

	repe(a, as) {
		mint powa = mint(a).pow(d);
		if (powa == 1 || powa == -1) goto LOOP_END;
		rep(r, s - 1) {
			powa *= powa;
			if (powa == 1) return false;
			if (powa == -1) goto LOOP_END;
		}
		return false;

	LOOP_END:;
	}

	return true;
}

int main() {
	cout << fixed << setprecision(12);
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n;
	cin >> n;

	rep(hoge, n) {
		int x;
		cin >> x;

		//cout << miller_rabin(n) << endl;
		cout << x << " " << internal::is_prime_constexpr(x) << endl;
	}
}
0