結果

問題 No.1733 Sum of Sorted Subarrays
ユーザー tokusakuraitokusakurai
提出日時 2021-10-20 15:31:02
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 643 ms / 3,000 ms
コード長 10,675 bytes
コンパイル時間 2,775 ms
コンパイル使用メモリ 215,972 KB
実行使用メモリ 13,908 KB
最終ジャッジ日時 2024-11-06 11:49:36
合計ジャッジ時間 12,619 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,820 KB
testcase_01 AC 2 ms
6,820 KB
testcase_02 AC 2 ms
6,820 KB
testcase_03 AC 2 ms
6,816 KB
testcase_04 AC 2 ms
6,820 KB
testcase_05 AC 2 ms
6,820 KB
testcase_06 AC 2 ms
6,816 KB
testcase_07 AC 2 ms
6,820 KB
testcase_08 AC 322 ms
8,676 KB
testcase_09 AC 503 ms
13,432 KB
testcase_10 AC 281 ms
8,588 KB
testcase_11 AC 361 ms
8,784 KB
testcase_12 AC 405 ms
13,064 KB
testcase_13 AC 402 ms
13,060 KB
testcase_14 AC 610 ms
13,644 KB
testcase_15 AC 562 ms
13,528 KB
testcase_16 AC 286 ms
8,720 KB
testcase_17 AC 606 ms
13,908 KB
testcase_18 AC 472 ms
13,080 KB
testcase_19 AC 500 ms
13,400 KB
testcase_20 AC 456 ms
13,160 KB
testcase_21 AC 559 ms
13,520 KB
testcase_22 AC 348 ms
8,740 KB
testcase_23 AC 639 ms
13,832 KB
testcase_24 AC 643 ms
13,832 KB
testcase_25 AC 642 ms
13,832 KB
testcase_26 AC 369 ms
13,828 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; i++)
#define rep2(i, x, n) for (int i = x; i <= n; i++)
#define rep3(i, x, n) for (int i = x; i >= n; i--)
#define each(e, v) for (auto &e : v)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;

template <int mod>
struct Mod_Int {
    int x;

    Mod_Int() : x(0) {}

    Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

    static int get_mod() { return mod; }

    Mod_Int &operator+=(const Mod_Int &p) {
        if ((x += p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator-=(const Mod_Int &p) {
        if ((x += mod - p.x) >= mod) x -= mod;
        return *this;
    }

    Mod_Int &operator*=(const Mod_Int &p) {
        x = (int)(1LL * x * p.x % mod);
        return *this;
    }

    Mod_Int &operator/=(const Mod_Int &p) {
        *this *= p.inverse();
        return *this;
    }

    Mod_Int &operator++() { return *this += Mod_Int(1); }

    Mod_Int operator++(int) {
        Mod_Int tmp = *this;
        ++*this;
        return tmp;
    }

    Mod_Int &operator--() { return *this -= Mod_Int(1); }

    Mod_Int operator--(int) {
        Mod_Int tmp = *this;
        --*this;
        return tmp;
    }

    Mod_Int operator-() const { return Mod_Int(-x); }

    Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }

    Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }

    Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }

    Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }

    bool operator==(const Mod_Int &p) const { return x == p.x; }

    bool operator!=(const Mod_Int &p) const { return x != p.x; }

    Mod_Int inverse() const {
        assert(*this != Mod_Int(0));
        return pow(mod - 2);
    }

    Mod_Int pow(long long k) const {
        Mod_Int now = *this, ret = 1;
        for (; k > 0; k >>= 1, now *= now) {
            if (k & 1) ret *= now;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }

    friend istream &operator>>(istream &is, Mod_Int &p) {
        long long a;
        is >> a;
        p = Mod_Int<mod>(a);
        return is;
    }
};

using mint = Mod_Int<MOD>;

template <typename Monoid, typename Operator_Monoid>
struct Lazy_Segment_Tree {
    using F = function<Monoid(Monoid, Monoid)>;
    using G = function<Monoid(Monoid, Operator_Monoid)>;
    using H = function<Operator_Monoid(Operator_Monoid, Operator_Monoid)>;
    int n, height;
    vector<Monoid> seg;
    vector<Operator_Monoid> lazy;
    const F f;
    const G g;
    const H h;
    const Monoid e1;
    const Operator_Monoid e2;

    // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a
    // h(h(p,q),r) = h(p,h(q,r)), h(e2,p) = h(p,e2) = p
    // g(f(a,b),p) = f(g(a,p),g(b,p))
    // g(g(a,p),q) = g(a,h(p,q))

    Lazy_Segment_Tree(const vector<Monoid> &v, const F &f, const G &g, const H &h, const Monoid &e1, const Operator_Monoid &e2) : f(f), g(g), h(h), e1(e1), e2(e2) {
        int m = v.size();
        n = 1, height = 0;
        while (n < m) n <<= 1, height++;
        seg.assign(2 * n, e1), lazy.assign(2 * n, e2);
        copy(begin(v), end(v), seg.begin() + n);
        for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]);
    }

    Lazy_Segment_Tree(int m, const Monoid &x, const F &f, const G &g, const H &h, const Monoid &e1, const Operator_Monoid &e2) : f(f), g(g), h(h), e1(e1), e2(e2) {
        n = 1, height = 0;
        while (n < m) n <<= 1, height++;
        seg.assign(2 * n, e1), lazy.assign(2 * n, e2);
        vector<Monoid> v(m, x);
        copy(begin(v), end(v), seg.begin() + n);
        for (int i = n - 1; i > 0; i--) seg[i] = f(seg[2 * i], seg[2 * i + 1]);
    }

    inline Monoid reflect(int i) const { return (lazy[i] == e2 ? seg[i] : g(seg[i], lazy[i])); }

    inline void recalc(int i) {
        while (i >>= 1) seg[i] = f(reflect(2 * i), reflect(2 * i + 1));
    }

    inline void eval(int i) {
        if (i < n && lazy[i] != e2) {
            lazy[2 * i] = h(lazy[2 * i], lazy[i]);
            lazy[2 * i + 1] = h(lazy[2 * i + 1], lazy[i]);
            seg[i] = reflect(i), lazy[i] = e2;
        }
    }

    inline void thrust(int i) {
        for (int j = height; j > 0; j--) eval(i >> j);
    }

    void apply(int l, int r, const Operator_Monoid &x) {
        l = max(l, 0), r = min(r, n);
        if (l >= r) return;
        l += n, r += n;
        thrust(l), thrust(r - 1);
        int a = l, b = r;
        while (l < r) {
            if (l & 1) lazy[l] = h(lazy[l], x), l++;
            if (r & 1) r--, lazy[r] = h(lazy[r], x);
            l >>= 1, r >>= 1;
        }
        recalc(a), recalc(b - 1);
    }

    Monoid query(int l, int r) {
        l = max(l, 0), r = min(r, n);
        if (l >= r) return e1;
        l += n, r += n;
        thrust(l), thrust(r - 1);
        Monoid L = e1, R = e1;
        while (l < r) {
            if (l & 1) L = f(L, reflect(l++));
            if (r & 1) R = f(reflect(--r), R);
            l >>= 1, r >>= 1;
        }
        return f(L, R);
    }

    Monoid operator[](int i) { return query(i, i + 1); }

    template <typename C>
    int find_subtree(int i, const C &check, const Monoid &x, Monoid &M, bool type) {
        while (i < n) {
            eval(i);
            Monoid nxt = type ? f(reflect(2 * i + type), M) : f(M, reflect(2 * i + type));
            if (check(nxt, x)) {
                i = 2 * i + type;
            } else {
                M = nxt, i = 2 * i + (type ^ 1);
            }
        }
        return i - n;
    }

    template <typename C>
    int find_first(int l, const C &check, const Monoid &x) { // check((区間[l,r]での演算結果), x)を満たす最小のr
        Monoid L = e1;
        int a = l + n, b = n + n;
        thrust(a);
        while (a < b) {
            if (a & 1) {
                Monoid nxt = f(L, reflect(a));
                if (check(nxt, x)) return find_subtree(a, check, x, L, false);
                L = nxt, a++;
            }
            a >>= 1, b >>= 1;
        }
        return n;
    }

    template <typename C>
    int find_last(int r, const C &check, const Monoid &x) { // check((区間[l,r)での演算結果), x)を満たす最大のl
        Monoid R = e1;
        int a = n, b = r + n;
        thrust(b - 1);
        while (a < b) {
            if (b & 1 || a == 1) {
                Monoid nxt = f(reflect(--b), R);
                if (check(nxt, x)) return find_subtree(b, check, x, R, true);
                R = nxt;
            }
            a >>= 1, b >>= 1;
        }
        return -1;
    }
};

template <typename T>
struct Binary_Indexed_Tree {
    vector<T> bit;
    const int n;

    Binary_Indexed_Tree(const vector<T> &v) : n((int)v.size()) {
        bit.resize(n + 1);
        copy(begin(v), end(v), begin(bit) + 1);
        for (int a = 2; a <= n; a <<= 1) {
            for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2];
        }
    }

    Binary_Indexed_Tree(int n, const T &x) : n(n) {
        bit.resize(n + 1);
        vector<T> v(n, x);
        copy(begin(v), end(v), begin(bit) + 1);
        for (int a = 2; a <= n; a <<= 1) {
            for (int b = a; b <= n; b += a) bit[b] += bit[b - a / 2];
        }
    }

    void add(int i, const T &x) {
        for (i++; i <= n; i += (i & -i)) bit[i] += x;
    }

    void change(int i, const T &x) { add(i, x - query(i, i + 1)); }

    T sum(int i) const {
        T ret = 0;
        for (; i > 0; i -= (i & -i)) ret += bit[i];
        return ret;
    }

    T query(int l, int r) const { return sum(r) - sum(l); }

    T operator[](int i) const { return query(i, i + 1); }

    int lower_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] < x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }

    int upper_bound(T x) const {
        int ret = 0;
        for (int k = 31 - __builtin_clz(n); k >= 0; k--) {
            if (ret + (1 << k) <= n && bit[ret + (1 << k)] <= x) x -= bit[ret += (1 << k)];
        }
        return ret;
    }
};

int main() {
    int N;
    cin >> N;

    vector<int> A(N);
    rep(i, N) cin >> A[i];

    vector<int> v = id_sort(A);

    auto f = [](mint a, mint b) { return a + b; };
    auto g = [](mint a, mint b) { return a * b; };
    auto h = [](mint a, mint b) { return a * b; };
    Lazy_Segment_Tree<mint, mint> seg1(N, 1, f, g, h, 0, 1), seg2(N, 1, f, g, h, 0, 1);

    vector<mint> ipw(N + 1, 1);
    mint tw = mint(2).inverse();
    rep(i, N) ipw[i + 1] = ipw[i] * tw;

    mint ans = 0;

    rep(i, N) {
        int e = v[i];
        ans += seg1.query(e, N) * seg2.query(0, e + 1) * ipw[i] * A[e];
        seg1.apply(e, N, 2), seg2.apply(0, e + 1, 2);
    }

    cout << ans << '\n';
}
0