結果
問題 | No.888 約数の総和 |
ユーザー |
|
提出日時 | 2021-10-20 16:25:11 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 17,322 bytes |
コンパイル時間 | 4,022 ms |
コンパイル使用メモリ | 247,752 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-09-20 06:36:03 |
合計ジャッジ時間 | 4,934 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用// 警告の抑制#define _CRT_SECURE_NO_WARNINGS// 使えるライブラリの読み込み#include <bits/stdc++.h>using namespace std;// 型名の短縮using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>;using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;using Graph = vvi;// 定数の定義const double PI = 3.14159265359;const double DEG = PI / 180.; // θ [deg] = θ * DEG [rad]const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)const vi dy4 = { 0, 1, 0, -1 };const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 };const ll INFL = (ll)2e18; const int INF = (int)1e9;const double EPS = 1e-10; // 許容誤差に応じて調整// 汎用マクロの定義#define all(a) (a).begin(), (a).end()#define sz(x) ((int)(x).size())#define distance (int)distance#define Yes(b) {cout << ((b) ? "Yes" : "No") << endl;}#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)#define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順)#define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順)// 汎用関数の定義template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら trueを返す)template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら trueを返す)// 入出力用の >>, << のオーバーロードtemplate <class T, class U> inline istream& operator>> (istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }template <class T, class U> inline ostream& operator<< (ostream& os, const pair<T, U>& p) { os << "(" << p.first << "," << p.second << ")"; return os; }template <class T, class U, class V> inline istream& operator>> (istream& is, tuple<T, U, V>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); returnis; }template <class T, class U, class V> inline ostream& operator<< (ostream& os, const tuple<T, U, V>& t) { os << "(" << get<0>(t) << "," << get<1>(t)<< "," << get<2>(t) << ")"; return os; }template <class T, class U, class V, class W> inline istream& operator>> (istream& is, tuple<T, U, V, W>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; }template <class T, class U, class V, class W> inline ostream& operator<< (ostream& os, const tuple<T, U, V, W>& t) { os << "(" << get<0>(t) << "," <<get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; }template <class T> inline istream& operator>> (istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }template <class T> inline ostream& operator<< (ostream& os, const vector<T>& v) { repe(x, v) os << x << " "; return os; }template <class T> inline ostream& operator<< (ostream& os, const set<T>& s) { repe(x, s) os << x << " "; return os; }template <class T> inline ostream& operator<< (ostream& os, const unordered_set<T>& s) { repe(x, s) os << x << " "; return os; }template <class T, class U> inline ostream& operator<< (ostream& os, const map<T, U>& m) { repe(p, m) os << p << " "; return os; }template <class T, class U> inline ostream& operator<< (ostream& os, const unordered_map<T, U>& m) { repe(p, m) os << p << " "; return os; }template <class T> inline ostream& operator<< (ostream& os, stack<T> s) { while (!s.empty()) { os << s.top() << " "; s.pop(); } return os; }template <class T> inline ostream& operator<< (ostream& os, queue<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop(); } return os; }template <class T> inline ostream& operator<< (ostream& os, deque<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop_front(); } return os; }template <class T> inline ostream& operator<< (ostream& os, priority_queue<T> q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; }// 手元環境(Visual Studio)#ifdef _MSC_VER#define popcount (int)__popcnt // 全ビット中の 1 の個数#define popcountll (int)__popcnt64inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed)inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; }inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed)inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; }template <class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }#define dump(x) cout << "\033[1;36m" << (x) << "\033[0m" << endl;#define dumps(x) cout << "\033[1;36m" << (x) << "\033[0m ";#define dumpel(a) { int i = 0; cout << "\033[1;36m"; repe(x, a) {cout << i++ << ": " << x << endl;} cout << "\033[0m"; }#define input_from_file(f) ifstream isTMP(f); cin.rdbuf(isTMP.rdbuf());#define output_to_file(f) ofstream osTMP(f); cout.rdbuf(osTMP.rdbuf());// 提出用(gcc)#else#define popcount (int)__builtin_popcount#define popcountll (int)__builtin_popcountll#define lsb __builtin_ctz#define lsbll __builtin_ctzll#define msb(n) (31 - __builtin_clz(n))#define msbll(n) (63 - __builtin_clzll(n))#define gcd __gcd#define dump(x)#define dumps(x)#define dumpel(v)#define input_from_file(f)#define output_to_file(f)#endif#endif // 折りたたみ用//-----------------AtCoder 専用-----------------#include <atcoder/all>using namespace atcoder;//using mint = modint1000000007;using mint = modint998244353;//using mint = modint; // mint::set_mod(m);template <class S, S(*op)(S, S), S(*e)()>ostream& operator<<(ostream& os, segtree<S, op, e> seg) { int n = seg.max_right(0, [](S x) {return true; });rep(i, n) os << seg.get(i) << " "; return os; }template <class S, S(*op)(S, S), S(*e)(), class F, S(*mp)(F, S), F(*cp)(F, F), F(*id)()>ostream& operator<<(ostream& os, lazy_segtree<S, op, e, F, mp, cp, id> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; }istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; }using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;//----------------------------------------------//【有限体 F_p 上の計算(64 bit)】/** 有限体 F_p 上ので様々な計算を行う.** 制約 : p は素数,コンパイラは gcc*///using a__int128 = ll; // デバッグ用struct mll {__int128 v;static __int128 MOD;// コンストラクタmll() : v(0) {};mll(const mll& a) = default;mll(const int& a) : v(safe_mod(a)) {};mll(const ll& a) : v(safe_mod(a)) {};// 代入mll& operator=(const mll& a) { v = a.v; return *this; }mll& operator=(const int& a) { v = safe_mod(a); return *this; }mll& operator=(const ll& a) { v = safe_mod(a); return *this; }// 入出力friend istream& operator>> (istream& is, mll& x) { ll tmp; is >> tmp; x.v = safe_mod(tmp); return is; }friend ostream& operator<< (ostream& os, const mll& x) { os << (ll)x.v; return os; }// 非負 modtemplate <class T>static __int128 safe_mod(T a) { return ((a % MOD) + MOD) % MOD; }// 比較bool operator==(const mll& b) const { return v == b.v; }bool operator==(const int& b) const { return v == safe_mod(b); }bool operator==(const ll& b) const { return v == safe_mod(b); }friend bool operator==(const int& a, const mll& b) { return b == a; }friend bool operator==(const ll& a, const mll& b) { return b == a; }// 演算mll& operator+=(const mll& b) { v = safe_mod(v + b.v); return *this; }mll& operator-=(const mll& b) { v = safe_mod(v - b.v); return *this; }mll& operator*=(const mll& b) { v = safe_mod(v * b.v); return *this; }mll& operator/=(const mll& b) { *this *= b.inv(); return *this; }mll operator+(const mll& b) const { mll a = *this; return a += b; }mll operator-(const mll& b) const { mll a = *this; return a -= b; }mll operator*(const mll& b) const { mll a = *this; return a *= b; }mll operator/(const mll& b) const { mll a = *this; return a /= b; }mll operator-() const { mll a = *this; return a *= -1; }// int との演算mll& operator+=(const int& b) { v = safe_mod(v + b); return *this; }mll& operator-=(const int& b) { v = safe_mod(v - b); return *this; }mll& operator*=(const int& b) { v = safe_mod(v * b); return *this; }mll& operator/=(const int& b) { *this *= mll(b).inv(); return *this; }mll operator+(const int& b) const { mll a = *this; return a += b; }mll operator-(const int& b) const { mll a = *this; return a -= b; }mll operator*(const int& b) const { mll a = *this; return a *= b; }mll operator/(const int& b) const { mll a = *this; return a /= b; }friend mll operator+(const int& a, const mll& b) { return b + a; }friend mll operator-(const int& a, const mll& b) { return -(b - a); }friend mll operator*(const int& a, const mll& b) { return b * a; }friend mll operator/(const int& a, const mll& b) { return mll(a) * b.inv(); }// ll との演算mll& operator+=(const ll& b) { v = safe_mod(v + b); return *this; }mll& operator-=(const ll& b) { v = safe_mod(v - b); return *this; }mll& operator*=(const ll& b) { v = safe_mod(v * b); return *this; }mll& operator/=(const ll& b) { *this *= mll(b).inv(); return *this; }mll operator+(const ll& b) const { mll a = *this; return a += b; }mll operator-(const ll& b) const { mll a = *this; return a -= b; }mll operator*(const ll& b) const { mll a = *this; return a *= b; }mll operator/(const ll& b) const { mll a = *this; return a /= b; }friend mll operator+(const ll& a, const mll& b) { return b + a; }friend mll operator-(const ll& a, const mll& b) { return -(b - a); }friend mll operator*(const ll& a, const mll& b) { return b * a; }friend mll operator/(const ll& a, const mll& b) { return mll(a) * b.inv(); }// 累乗mll pow(ll d) const {mll res(1), pow2 = *this;while (d > 0) {if (d & 1LL) res *= pow2;pow2 *= pow2;d /= 2;}return res;}// 逆元mll inv() const { return pow(MOD - 2); }// 法の設定,確認static void set_mod(ll MOD_) { MOD = MOD_; }static ll mod() { return (ll)MOD; }// 値の確認ll val() const { return (ll)safe_mod(v); }};__int128 mll::MOD;//【素数判定/ミラー - ラビン法】/** n が素数かを返す.** 利用:【有限体 F_p 上の計算(64 bit)】*/bool miller_rabin(ll n) {// 参考 : https://nyaannyaan.github.io/library/prime/fast-factorize.hpp.html//【方法】// p を奇素数とすると,任意の a=[1..p) についてフェルマーの小定理より// a^(p-1) = 1 (mod p)// となる.これの平方根を考えていくと,// p - 1 = 2^s d (d : 奇数)// と表せば,// a^d = 1 (mod p) or ∃r=[0..s), a^(2^r d) = -1 (mod p)// と書き直せる.//// この対偶を用いて判定することをランダムに選んだ a で繰り返す.// n の範囲を限定するなら擬素数を生じない a を固定的に選べる.assert(n > 0);const vl as = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 };if (n == 2 || n == 3 || n == 5 || n == 13 || n == 19 || n == 73 || n == 193|| n == 407521 || n == 299210837) return true;if (n == 1 || n % 2 == 0) return false;mll::set_mod(n);int s = 0; ll d = n - 1LL;while (d % 2 == 0) {s++;d /= 2;}repe(a, as) {mll powa = mll(a).pow(d);if (powa == 1 || powa == -1) goto LOOP_END;rep(r, s - 1) {powa *= powa;if (powa == 1) return false;if (powa == -1) goto LOOP_END;}return false;LOOP_END:;}return true;}//【約数検出/ポラードのρ法】O(n^(1/4))/** n の真の約数を何か 1 つ返す.** 制約 : n は合成数** 利用:【有限体 F_p 上の計算(64 bit)】*/ll pollard_rho(ll n) {// 参考 : https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98//【方法】// 適当な定数 c をとり関数 f : Z/nZ → Z/nZ を// f(x) = x^2 + c// と定める.//// 適当な初期値 x[0] = y[0] (= 2) から始め,Z/nZ 上の数列を漸化式// x[i + 1] = f(x[i]), y[i + 1] = f(f(y[i]))// で定める.フロイドの循環検出法より,もし// gcd(x[i] - y[i], n) = g ∈ (1..n)// であれば,これは f が Z/gZ(g は n の真の約数)で巡回したことを意味する.//// 実際には,// x は r = (2 冪) 個ずつ進める(定数 1/2 倍)// gcd の計算を m = n^(1/8) 程度個まとめて行う(gcd の log を落とす)// ことにより高速化を図る.assert(n >= 4);if (!(n & 1)) return 2;int m = 1 << (msbll(n) / 8);mll::set_mod(n); // n は合成数だが割り算は使わないので問題ないconst int c_max = 99; // c を最大どこまで試すかrepi(c, 1, c_max) {auto f = [&](mll x) { return x * x + c; };mll x, y = 2, y_bak;ll g = 1;int r = 1;// g = 1 である間は巡回未検出while (g == 1) {// x, y を r = 2^i だけ一気に進める.x = y;rep(hoge, r) y = f(y);// 次の r = 2^i 個をまとめて見る.for (int k = 0; k < r; k += m) {// 一気に掛けすぎて g = n となってしまった場合の復元用y_bak = y;// m 個ごとにまとめて見る.mll mul = 1;rep(i, min(m, r - k)) {y = f(y);// 複数個掛けておき,後でまとめて gcd を計算する.//(フロイドの循環検出法とは違い x を固定しているが,// 巡回は検出できるので問題ない.)mul *= x - y;}g = gcd(mul.val(), n);// g != 1 なら巡回を検出できたので次の処理へif (g != 1) goto LOOP_END;}r *= 2;}LOOP_END:;// 一気に掛けすぎて g = n となってしまった(であろう)場合if (g == n) {// 復元用に残しておいた x, y_bak から再スタートg = 1;while (g == 1) {y_bak = f(y_bak);g = gcd((x - y_bak).val(), n);}}// g < n なら g が n の真の約数なのでそれを返す.if (g < n) return g;// g = n ならたまたま真の約数が全て同時検出されてしまったので,// 関数 f における定数項 c の値を別のものに取り替えて再挑戦.}// 複数個の c を試してなお失敗したなら諦める.return n;}//【素因数分解/ポラードのρ法】O(n^(1/4))/** n を素因数分解した結果を pps に格納する.** pps[p] = d : n に素因数 p が d 個含まれていることを表す.** 利用:【素数判定/ミラー - ラビン法】,【約数検出/ポラードのρ法】*/void factor_integer_fast(ll n, map<ll, int>& pps) {assert(n > 0);pps.clear();if (n == 1) return;queue<ll> divs;divs.push(n);while (!divs.empty()) {ll d = divs.front();divs.pop();if (miller_rabin(d)) {pps[d]++;}else {ll d1 = pollard_rho(d);ll d2 = d / d1;divs.push(d1);divs.push(d2);}}}//【約数列挙】O(n^(1/4))/** n の約数全てをリスト divs に昇順に格納する.** 利用:【素因数分解/ポラードのρ法】*/void divisors(ll n, vl& divs) {assert(n > 0);map<ll, int> pps;factor_integer_fast(n, pps);divs = vl({ 1 });repe(pp, pps) {ll p; int d;tie(p, d) = pp;vl powp(d);powp[0] = p;rep(i, d - 1) powp[i + 1] = powp[i] * p;int m = sz(divs);repir(j, m - 1, 0) {rep(i, d) {divs.push_back(divs[j] * powp[i]);}}}sort(all(divs));}int main() {cout << fixed << setprecision(15);// input_from_file("input.txt");// output_to_file("output.txt");ll n;cin >> n;vl divs;divisors(n, divs);ll res = accumulate(all(divs), 0LL);cout << res << endl;}