結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
manta1130
|
| 提出日時 | 2021-10-20 22:47:28 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 10,987 bytes |
| コンパイル時間 | 12,279 ms |
| コンパイル使用メモリ | 379,472 KB |
| 実行使用メモリ | 6,944 KB |
| 最終ジャッジ日時 | 2024-09-20 06:45:48 |
| 合計ジャッジ時間 | 14,768 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 9 WA * 1 |
ソースコード
#[allow(unused_imports)]
use std::io::{stdout, BufWriter, Write};
fn main() {
let out = stdout();
let mut out = BufWriter::new(out.lock());
inputv! {
t:usize
}
for _ in 0..t {
inputv! {
n:u64
}
writeln!(out, "{} {}", n, miller_rabin(n) as usize).unwrap();
}
}
//https://github.com/manta1130/competitive-template-rs
use input::*;
use primenumber::*;
pub mod input {
use std::cell::RefCell;
use std::io;
pub const SPLIT_DELIMITER: char = ' ';
pub use std::io::prelude::*;
thread_local! {
pub static INPUT_BUFFER:RefCell<std::collections::VecDeque<String>>=RefCell::new(std::collections::VecDeque::new());
}
#[macro_export]
macro_rules! input_internal {
($x:ident : $t:ty) => {
INPUT_BUFFER.with(|p| {
if p.borrow().len() == 0 {
let temp_str = input_line_str();
let mut split_result_iter = temp_str
.split(SPLIT_DELIMITER)
.map(|q| q.to_string())
.collect::<std::collections::VecDeque<_>>();
p.borrow_mut().append(&mut split_result_iter)
}
});
let mut buf_split_result = String::new();
INPUT_BUFFER.with(|p| buf_split_result = p.borrow_mut().pop_front().unwrap());
let $x: $t = buf_split_result.parse().unwrap();
};
(mut $x:ident : $t:ty) => {
INPUT_BUFFER.with(|p| {
if p.borrow().len() == 0 {
let temp_str = input_line_str();
let mut split_result_iter = temp_str
.split(SPLIT_DELIMITER)
.map(|q| q.to_string())
.collect::<std::collections::VecDeque<_>>();
p.borrow_mut().append(&mut split_result_iter)
}
});
let mut buf_split_result = String::new();
INPUT_BUFFER.with(|p| buf_split_result = p.borrow_mut().pop_front().unwrap());
let mut $x: $t = buf_split_result.parse().unwrap();
};
}
pub fn input_buffer_is_empty() -> bool {
let mut empty = false;
INPUT_BUFFER.with(|p| {
if p.borrow().len() == 0 {
empty = true;
}
});
empty
}
#[macro_export]
macro_rules! inputv {
($i:ident : $t:ty) => {
input_internal!{$i : $t}
};
(mut $i:ident : $t:ty) => {
input_internal!{mut $i : $t}
};
($i:ident : $t:ty $(,)*) => {
input_internal!{$i : $t}
};
(mut $i:ident : $t:ty $(,)*) => {
input_internal!{mut $i : $t}
};
(mut $i:ident : $t:ty,$($q:tt)*) => {
input_internal!{mut $i : $t}
inputv!{$($q)*}
};
($i:ident : $t:ty,$($q:tt)*) => {
input_internal!{$i : $t}
inputv!{$($q)*}
};
}
pub fn input_all() {
INPUT_BUFFER.with(|p| {
if p.borrow().len() == 0 {
let mut temp_str = String::new();
std::io::stdin().read_to_string(&mut temp_str).unwrap();
let mut split_result_iter = temp_str
.split_whitespace()
.map(|q| q.to_string())
.collect::<std::collections::VecDeque<_>>();
p.borrow_mut().append(&mut split_result_iter)
}
});
}
pub fn input_line_str() -> String {
let mut s = String::new();
io::stdin().read_line(&mut s).unwrap();
s.trim().to_string()
}
#[allow(clippy::match_wild_err_arm)]
pub fn input_vector<T>() -> Vec<T>
where
T: std::str::FromStr,
{
let mut v: Vec<T> = Vec::new();
let s = input_line_str();
let split_result = s.split(SPLIT_DELIMITER);
for z in split_result {
let buf = match z.parse() {
Ok(r) => r,
Err(_) => panic!("Parse Error",),
};
v.push(buf);
}
v
}
#[allow(clippy::match_wild_err_arm)]
pub fn input_vector_row<T>(n: usize) -> Vec<T>
where
T: std::str::FromStr,
{
let mut v = Vec::with_capacity(n);
for _ in 0..n {
let buf = match input_line_str().parse() {
Ok(r) => r,
Err(_) => panic!("Parse Error",),
};
v.push(buf);
}
v
}
pub trait ToCharVec {
fn to_charvec(&self) -> Vec<char>;
}
impl ToCharVec for String {
fn to_charvec(&self) -> Vec<char> {
self.to_string().chars().collect::<Vec<_>>()
}
}
}
pub mod primenumber {
use std::iter::Iterator;
type ValueType = u64;
pub trait GetDivisor {
fn get_divisor(&self) -> Divisor;
}
macro_rules! GetDivisor_macro{
($($t:ty),*) => {
$(
impl GetDivisor for $t {
fn get_divisor(&self) -> Divisor {
Divisor::calc(*self as ValueType)
}
})*
};
}
GetDivisor_macro!(u32, u64, u128, usize, i32, i64, i128, isize);
pub trait GetPrimeFactorization {
fn prime_factorization(&self) -> PrimeFactorization;
}
macro_rules! PrimeFactorization_macro{
($($t:ty),*) => {
$(
impl GetPrimeFactorization for $t {
fn prime_factorization(&self) -> PrimeFactorization {
PrimeFactorization::calc(*self as ValueType)
}
})*
};
}
PrimeFactorization_macro!(u32, u64, u128, usize, i32, i64, i128, isize);
pub struct Divisor {
n: ValueType,
cur: ValueType,
flag: bool,
}
impl Divisor {
pub fn calc(n: ValueType) -> Divisor {
Divisor {
n,
cur: 1,
flag: false,
}
}
}
impl Iterator for Divisor {
type Item = ValueType;
fn next(&mut self) -> Option<Self::Item> {
if self.cur * self.cur > self.n {
None
} else if self.flag {
if self.cur * self.cur == self.n {
return None;
}
self.flag = false;
self.cur += 1;
Some(self.n / (self.cur - 1))
} else {
while self.n % self.cur != 0 {
self.cur += 1;
if self.cur * self.cur > self.n {
return None;
}
}
self.flag = true;
Some(self.cur)
}
}
}
pub struct PrimeFactorization<'a> {
n: ValueType,
cur: ValueType,
p_list: Option<&'a [ValueType]>,
idx: usize,
}
impl<'a> PrimeFactorization<'a> {
pub fn calc(n: ValueType) -> PrimeFactorization<'a> {
PrimeFactorization {
n,
cur: 1,
p_list: None,
idx: 0,
}
}
pub fn calc_fast(n: ValueType, p_list: &'a [ValueType]) -> PrimeFactorization<'a> {
PrimeFactorization {
n,
cur: 1,
p_list: Some(p_list),
idx: 0,
}
}
}
impl<'a> Iterator for PrimeFactorization<'a> {
type Item = ValueType;
fn next(&mut self) -> Option<Self::Item> {
loop {
if self.cur == 0 || self.cur > self.n {
return None;
}
if self.p_list.is_some() {
if self.idx >= self.p_list.unwrap().len() {
return None;
}
self.cur = self.p_list.unwrap()[self.idx];
self.idx += 1;
} else {
self.cur += 1;
}
if self.cur * self.cur > self.n {
if self.n != 1 {
self.cur = 0;
return Some(self.n);
}
return None;
}
if self.n % self.cur == 0 {
self.n /= self.cur;
if self.p_list.is_some() {
self.idx -= 1;
}
self.cur -= 1;
return Some(self.cur + 1);
}
}
}
}
pub fn get_primelist(u: ValueType) -> Vec<ValueType> {
let mut v = vec![true; u as usize + 1];
let mut r = vec![];
for i in 2..=u as usize {
if v[i] {
r.push(i as ValueType);
let mut j = i * i;
while j <= u as usize {
v[j] = false;
j += i;
}
}
}
r
}
pub fn get_mobius(n: ValueType) -> Vec<isize> {
let mut r = vec![0, 1];
let p = get_primelist(n);
for i in 2..=n {
let mut f = PrimeFactorization::calc_fast(i as u64, &p).collect::<Vec<_>>();
let count = f.len();
f.dedup();
if f.len() != count {
r.push(0);
} else {
r.push(if f.len() % 2 == 0 { 1 } else { -1 });
}
}
r
}
fn modpow(mut s: u128, mut n: u128, p: u128) -> u128 {
if p == 0 {
return 1;
}
let mut t = s;
s = 1;
while n > 0 {
if n & 1 != 0 {
s *= t;
s %= p;
}
n >>= 1;
t *= t;
t %= p;
}
s
}
pub fn miller_rabin(n: u64) -> bool {
if n == 2 {
return true;
}
if n == 1 || n % 2 == 0 {
return false;
}
let (mut s, mut t) = (0, n - 1);
while t % 2 == 0 {
s += 1;
t >>= 1;
}
let arr = if n <= 4_759_123_141 {
vec![2, 7, 61]
} else if n <= 3_825_123_056_546_413_051 {
vec![2, 3, 5, 7, 11, 13, 17, 19, 23]
} else {
vec![2, 325, 9_375, 28_178, 450_775, 9_780_504, 1_795_265_022]
}
.iter()
.filter(|&&q| q < n)
.cloned()
.collect::<Vec<_>>();
let millor_rabin_inner = |a| {
if modpow(a as u128, t as u128, n as u128) == 1 {
return true;
}
for i in 0..s {
if modpow(a as u128, 2_u128.pow(i) * t as u128, n as u128) as u64 == n - 1 {
return true;
}
}
false
};
for a in arr {
if !millor_rabin_inner(a) {
return false;
}
}
true
}
}
manta1130