結果
問題 | No.526 フィボナッチ数列の第N項をMで割った余りを求める |
ユーザー | vwxyz |
提出日時 | 2021-10-20 23:17:43 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 45 ms / 2,000 ms |
コード長 | 17,600 bytes |
コンパイル時間 | 295 ms |
コンパイル使用メモリ | 14,336 KB |
実行使用メモリ | 13,440 KB |
最終ジャッジ日時 | 2024-09-20 06:46:35 |
合計ジャッジ時間 | 1,727 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 44 ms
13,312 KB |
testcase_01 | AC | 45 ms
13,312 KB |
testcase_02 | AC | 44 ms
13,312 KB |
testcase_03 | AC | 44 ms
13,440 KB |
testcase_04 | AC | 43 ms
13,312 KB |
testcase_05 | AC | 43 ms
13,312 KB |
testcase_06 | AC | 43 ms
13,312 KB |
testcase_07 | AC | 42 ms
13,312 KB |
testcase_08 | AC | 43 ms
13,312 KB |
testcase_09 | AC | 43 ms
13,440 KB |
testcase_10 | AC | 45 ms
13,312 KB |
testcase_11 | AC | 44 ms
13,312 KB |
testcase_12 | AC | 45 ms
13,440 KB |
testcase_13 | AC | 43 ms
13,312 KB |
testcase_14 | AC | 43 ms
13,440 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines class Polynomial: def __init__(self,polynomial,max_degree=-1,eps=0,mod=0): self.max_degree=max_degree if self.max_degree!=-1 and len(polynomial)>self.max_degree+1: self.polynomial=polynomial[:self.max_degree+1] else: self.polynomial=polynomial self.mod=mod self.eps=eps def __eq__(self,other): if type(other)!=Polynomial: return False if len(self.polynomial)!=len(other.polynomial): return False for i in range(len(self.polynomial)): if self.eps<abs(self.polynomial[i]-other.polynomial[i]): return False return True def __ne__(self,other): if type(other)!=Polynomial: return True if len(self.polynomial)!=len(other.polynomial): return True for i in range(len(self.polynomial)): if self.eps<abs(self.polynomial[i]-other.polynomial[i]): return True return False def __add__(self,other): if type(other)==Polynomial: summ=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): summ[i]+=self.polynomial[i] for i in range(len(other.polynomial)): summ[i]+=other.polynomial[i] if self.mod: for i in range(len(summ)): summ[i]%=self.mod else: summ=[x for x in self.polynomial] if self.polynomial else [0] summ[0]+=other if self.mod: summ[0]%=self.mod while summ and abs(summ[-1])<=self.eps: summ.pop() summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return summ def __sub__(self,other): if type(other)==Polynomial: diff=[0]*max(len(self.polynomial),len(other.polynomial)) for i in range(len(self.polynomial)): diff[i]+=self.polynomial[i] for i in range(len(other.polynomial)): diff[i]-=other.polynomial[i] if self.mod: for i in range(len(diff)): diff[i]%=self.mod else: diff=[x for x in self.polynomial] if self.polynomial else [0] diff[0]-=other if self.mod: diff[0]%=self.mod while diff and abs(diff[-1])<=self.eps: diff.pop() diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return diff def __mul__(self,other): if type(other)==Polynomial: if self.max_degree==-1: prod=[0]*(len(self.polynomial)+len(other.polynomial)-1) for i in range(len(self.polynomial)): for j in range(len(other.polynomial)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] else: prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1) for i in range(len(self.polynomial)): for j in range(min(len(other.polynomial),self.max_degree+1-i)): prod[i+j]+=self.polynomial[i]*other.polynomial[j] if self.mod: for i in range(len(prod)): prod[i]%=self.mod else: if self.mod: prod=[x*other%self.mod for x in self.polynomial] else: prod=[x*other for x in self.polynomial] while prod and abs(prod[-1])<=self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __matmul__(self,other): assert type(other)==Polynomial if self.mod: prod=NTT(self.polynomial,other.polynomial) else: prod=FFT(self.polynomial,other.polynomial) if self.max_degree!=-1 and len(prod)>self.max_degree+1: prod=prod[:self.max_degree+1] while prod and abs(prod[-1])<=self.eps: prod.pop() prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return prod def __truediv__(self,other): if type(other)==Polynomial: assert other.polynomial for n in range(len(other.polynomial)): if self.eps<abs(other.polynomial[n]): break assert len(self.polynomial)>n for i in range(n): assert abs(self.polynomial[i])<=self.eps self_polynomial=self.polynomial[n:] other_polynomial=other.polynomial[n:] if self.mod: inve=MOD(self.mod).Pow(other_polynomial[0],-1) else: inve=1/other_polynomial[0] quot=[] for i in range(len(self_polynomial)-len(other_polynomial)+1): if self.mod: quot.append(self_polynomial[i]*inve%self.mod) else: quot.append(self_polynomial[i]*inve) for j in range(len(other_polynomial)): self_polynomial[i+j]-=other_polynomial[j]*quot[-1] if self.mod: self_polynomial[i+j]%=self.mod for i in range(max(0,len(self_polynomial)-len(other_polynomial)+1),len(self_polynomial)): if self.eps<abs(self_polynomial[i]): assert self.max_degree!=-1 self_polynomial=self_polynomial[-len(other_polynomial)+1:]+[0]*(len(other_polynomial)-1-len(self_polynomial)) while len(quot)<=self.max_degree: self_polynomial.append(0) if self.mod: quot.append(self_polynomial[0]*inve%self.mod) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))] else: quot.append(self_polynomial[0]*inve) self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))] break quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: assert self.eps<abs(other) if self.mod: inve=MOD(self.mod).Pow(other,-1) quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __rtruediv__(self,other): assert self.polynomial and self.eps<self.polynomial[0] assert self.max_degree!=-1 if self.mod: quot=[MOD(self.mod).Pow(self.polynomial[0],-1)] if self.mod==998244353: prim_root=3 prim_root_inve=332748118 else: prim_root=Primitive_Root(self.mod) prim_root_inve=MOD(self.mod).Pow(prim_root,-1) def DFT(polynomial,n,inverse=False): polynomial=polynomial+[0]*((1<<n)-len(polynomial)) if inverse: for bit in range(1,n+1): a=1<<bit-1 x=pow(prim_root,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod x=pow((mod+1)//2,n,mod) for i in range(1<<n): polynomial[i]*=x polynomial[i]%=mod else: for bit in range(n,0,-1): a=1<<bit-1 x=pow(prim_root_inve,mod-1>>bit,mod) U=[1] for _ in range(a): U.append(U[-1]*x%mod) for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod return polynomial else: quot=[1/self.polynomial[0]] def DFT(polynomial,n,inverse=False): N=len(polynomial) if inverse: primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)] else: primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)] polynomial=polynomial+[0]*((1<<n)-N) if inverse: for bit in range(1,n+1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit] for i in range(1<<n): polynomial[i]=round((polynomial[i]/(1<<n)).real) else: for bit in range(n,0,-1): a=1<<bit-1 for i in range(1<<n-bit): for j in range(a): s=i*2*a+j t=s+a polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t]) return polynomial for n in range(self.max_degree.bit_length()): prev=quot if self.mod: polynomial=[x*y*y%self.mod for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))] quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1] else: polynomial=[x*y*y for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))] quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1] for i in range(1<<n): quot[i]=2*prev[i]-quot[i] if self.mod: quot[i]%=self.mod for i in range(1<<n,1<<n+1): quot[i]=-quot[i] if self.mod: quot[i]%=self.mod quot=quot[:self.max_degree+1] for i in range(len(quot)): quot[i]*=other if self.mod: quot[i]%=self.mod return quot def __floordiv__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot def __mod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] while rema and abs(rema[-1])<=self.eps: rema.pop() rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return rema def __divmod__(self,other): assert type(other)==Polynomial quot=[0]*(len(self.polynomial)-len(other.polynomial)+1) rema=[x for x in self.polynomial] if self.mod: inve=MOD(self.mod).Pow(other.polynomial[-1],-1) for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] rema[i+j]%=self.mod else: inve=1/other.polynomial[-1] for i in range(len(self.polynomial)-len(other.polynomial),-1,-1): quot[i]=rema[i+len(other.polynomial)-1]*inve for j in range(len(other.polynomial)): rema[i+j]-=quot[i]*other.polynomial[j] while rema and abs(rema[-1])<=self.eps: rema.pop() quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod) rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod) return quot,rema def __neg__(self): if self.mod: nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) else: nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return nega def __pos__(self): posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod) return posi def __bool__(self): return self.polynomial def __getitem__(self,n): if n<=len(self.polynomial)-1: return self.polynomial[n] else: return 0 def __setitem__(self,n,x): if self.mod: x%=self.mod if self.max_degree==-1 or n<=self.max_degree: if n<=len(self.polynomial)-1: self.polynomial[n]=x elif self.eps<abs(x): self.polynomial+=[0]*(n-len(self.polynomial))+[x] def __call__(self,x): retu=0 pow_x=1 for i in range(len(self.polynomial)): retu+=pow_x*self.polynomial[i] pow_x*=x if self.mod: retu%=self.mod pow_x%=self.mod return retu def __str__(self): return "["+", ".join(map(str,self.polynomial))+"]" def degree(self): return len(self.polynomial)-1 def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False): if type(poly_nume)==Polynomial: poly_nume=poly_nume.polynomial if type(poly_deno)==Polynomial: poly_deno=poly_deno.polynomial if ntt: convolve=NTT elif fft: convolve=FFT else: def convolve(poly_nume,poly_deno): conv=[0]*(len(poly_nume)+len(poly_deno)-1) for i in range(len(poly_nume)): for j in range(len(poly_deno)): conv[i+j]+=poly_nume[i]*poly_deno[j] if mod: for i in range(len(conv)): conv[i]%=mod return conv while N: poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)] if N%2: poly_nume=convolve(poly_nume,poly_deno_)[1::2] else: poly_nume=convolve(poly_nume,poly_deno_)[::2] poly_deno=convolve(poly_deno,poly_deno_)[::2] if fft and mod: for i in range(len(poly_nume)): poly_nume[i]%=mod for i in range(len(poly_deno)): poly_deno[i]%=mod N//=2 return poly_nume[0] N,M=map(int,readline().split()) ans=Bostan_Mori([1,-1],[1,-1,-1],N,mod=M) print(ans)