結果
問題 | No.8038 フィボナッチ数列の周期 |
ユーザー | vwxyz |
提出日時 | 2021-10-21 03:15:09 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 960 ms / 3,000 ms |
コード長 | 4,872 bytes |
コンパイル時間 | 300 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 225,920 KB |
最終ジャッジ日時 | 2024-09-20 06:52:10 |
合計ジャッジ時間 | 21,337 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 597 ms
214,272 KB |
testcase_01 | AC | 595 ms
214,272 KB |
testcase_02 | AC | 603 ms
214,272 KB |
testcase_03 | AC | 598 ms
214,144 KB |
testcase_04 | AC | 587 ms
214,144 KB |
testcase_05 | AC | 596 ms
214,016 KB |
testcase_06 | AC | 598 ms
214,400 KB |
testcase_07 | AC | 750 ms
225,792 KB |
testcase_08 | AC | 762 ms
225,664 KB |
testcase_09 | AC | 753 ms
225,792 KB |
testcase_10 | AC | 745 ms
225,664 KB |
testcase_11 | AC | 766 ms
225,792 KB |
testcase_12 | AC | 732 ms
225,664 KB |
testcase_13 | AC | 766 ms
225,536 KB |
testcase_14 | AC | 747 ms
225,792 KB |
testcase_15 | AC | 768 ms
225,792 KB |
testcase_16 | AC | 934 ms
225,920 KB |
testcase_17 | AC | 930 ms
225,792 KB |
testcase_18 | AC | 942 ms
225,792 KB |
testcase_19 | AC | 926 ms
225,792 KB |
testcase_20 | AC | 943 ms
225,664 KB |
testcase_21 | AC | 932 ms
225,664 KB |
testcase_22 | AC | 960 ms
225,664 KB |
testcase_23 | AC | 936 ms
225,664 KB |
testcase_24 | AC | 958 ms
225,664 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines class Prime: def __init__(self,N): assert N<=10**8 self.smallest_prime_factor=[None]*(N+1) for i in range(2,N+1,2): self.smallest_prime_factor[i]=2 n=int(N**.5)+1 for p in range(3,n,2): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p for i in range(p**2,N+1,2*p): if self.smallest_prime_factor[i]==None: self.smallest_prime_factor[i]=p for p in range(n,N+1): if self.smallest_prime_factor[p]==None: self.smallest_prime_factor[p]=p self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]] def Factorize(self,N): assert N>=1 factors=defaultdict(int) if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] else: for p in self.primes: while N%p==0: N//=p factors[p]+=1 if N<p*p: if N!=1: factors[N]+=1 break if N<=len(self.smallest_prime_factor)-1: while N!=1: factors[self.smallest_prime_factor[N]]+=1 N//=self.smallest_prime_factor[N] break else: if N!=1: factors[N]+=1 return factors def Divisors(self,N): assert N>0 divisors=[1] for p,e in self.Factorize(N).items(): A=[1] for _ in range(e): A.append(A[-1]*p) divisors=[i*j for i in divisors for j in A] return divisors def Is_Prime(self,N): return N==self.smallest_prime_factor[N] def Totient(self,N): for p in self.Factorize(N).keys(): N*=p-1 N//=p return N def Mebius(self,N): fact=self.Factorize(N) for e in fact.values(): if e>=2: return 0 else: if len(fact)%2==0: return 1 else: return -1 def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False): if ntt: convolve=NTT elif fft: convolve=FFT else: def convolve(poly_nume,poly_deno): conv=[0]*(len(poly_nume)+len(poly_deno)-1) for i in range(len(poly_nume)): for j in range(len(poly_deno)): conv[i+j]+=poly_nume[i]*poly_deno[j] if mod: for i in range(len(conv)): conv[i]%=mod return conv while N: poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)] if N%2: poly_nume=convolve(poly_nume,poly_deno_)[1::2] else: poly_nume=convolve(poly_nume,poly_deno_)[::2] poly_deno=convolve(poly_deno,poly_deno_)[::2] if fft and mod: for i in range(len(poly_nume)): poly_nume[i]%=mod for i in range(len(poly_deno)): poly_deno[i]%=mod N//=2 return poly_nume[0] N=int(readline()) lcm=defaultdict(int) mod=10**9+7 Pr=Prime(10**7) for i in range(N): P,K=map(int,readline().split()) if P==2: period=3 elif P==5: period=20 else: if P%5 in (1,4): period=P-1 else: period=2*P+2 for p,e in Pr.Factorize(period).items(): for _ in range(e): a=Bostan_Mori([0,1],[1,-1,-1],period//p,mod=P) b=Bostan_Mori([0,1],[1,-1,-1],period//p+1,mod=P) if (a,b)==(0,1): period//=p else: break fact=defaultdict(int) for p,e in Pr.Factorize(period).items(): fact[p]+=e for p,e in Pr.Factorize(P).items(): fact[p]+=e*(K-1) for p,e in fact.items(): lcm[p]=max(lcm[p],e) ans=1 for p,e in lcm.items(): ans*=pow(p,e,mod) ans%=mod print(ans)