結果
| 問題 |
No.8038 フィボナッチ数列の周期
|
| コンテスト | |
| ユーザー |
vwxyz
|
| 提出日時 | 2021-10-21 03:15:09 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 960 ms / 3,000 ms |
| コード長 | 4,872 bytes |
| コンパイル時間 | 300 ms |
| コンパイル使用メモリ | 81,920 KB |
| 実行使用メモリ | 225,920 KB |
| 最終ジャッジ日時 | 2024-09-20 06:52:10 |
| 合計ジャッジ時間 | 21,337 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 25 |
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
class Prime:
def __init__(self,N):
assert N<=10**8
self.smallest_prime_factor=[None]*(N+1)
for i in range(2,N+1,2):
self.smallest_prime_factor[i]=2
n=int(N**.5)+1
for p in range(3,n,2):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
for i in range(p**2,N+1,2*p):
if self.smallest_prime_factor[i]==None:
self.smallest_prime_factor[i]=p
for p in range(n,N+1):
if self.smallest_prime_factor[p]==None:
self.smallest_prime_factor[p]=p
self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]
def Factorize(self,N):
assert N>=1
factors=defaultdict(int)
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factors[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
else:
for p in self.primes:
while N%p==0:
N//=p
factors[p]+=1
if N<p*p:
if N!=1:
factors[N]+=1
break
if N<=len(self.smallest_prime_factor)-1:
while N!=1:
factors[self.smallest_prime_factor[N]]+=1
N//=self.smallest_prime_factor[N]
break
else:
if N!=1:
factors[N]+=1
return factors
def Divisors(self,N):
assert N>0
divisors=[1]
for p,e in self.Factorize(N).items():
A=[1]
for _ in range(e):
A.append(A[-1]*p)
divisors=[i*j for i in divisors for j in A]
return divisors
def Is_Prime(self,N):
return N==self.smallest_prime_factor[N]
def Totient(self,N):
for p in self.Factorize(N).keys():
N*=p-1
N//=p
return N
def Mebius(self,N):
fact=self.Factorize(N)
for e in fact.values():
if e>=2:
return 0
else:
if len(fact)%2==0:
return 1
else:
return -1
def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False):
if ntt:
convolve=NTT
elif fft:
convolve=FFT
else:
def convolve(poly_nume,poly_deno):
conv=[0]*(len(poly_nume)+len(poly_deno)-1)
for i in range(len(poly_nume)):
for j in range(len(poly_deno)):
conv[i+j]+=poly_nume[i]*poly_deno[j]
if mod:
for i in range(len(conv)):
conv[i]%=mod
return conv
while N:
poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)]
if N%2:
poly_nume=convolve(poly_nume,poly_deno_)[1::2]
else:
poly_nume=convolve(poly_nume,poly_deno_)[::2]
poly_deno=convolve(poly_deno,poly_deno_)[::2]
if fft and mod:
for i in range(len(poly_nume)):
poly_nume[i]%=mod
for i in range(len(poly_deno)):
poly_deno[i]%=mod
N//=2
return poly_nume[0]
N=int(readline())
lcm=defaultdict(int)
mod=10**9+7
Pr=Prime(10**7)
for i in range(N):
P,K=map(int,readline().split())
if P==2:
period=3
elif P==5:
period=20
else:
if P%5 in (1,4):
period=P-1
else:
period=2*P+2
for p,e in Pr.Factorize(period).items():
for _ in range(e):
a=Bostan_Mori([0,1],[1,-1,-1],period//p,mod=P)
b=Bostan_Mori([0,1],[1,-1,-1],period//p+1,mod=P)
if (a,b)==(0,1):
period//=p
else:
break
fact=defaultdict(int)
for p,e in Pr.Factorize(period).items():
fact[p]+=e
for p,e in Pr.Factorize(P).items():
fact[p]+=e*(K-1)
for p,e in fact.items():
lcm[p]=max(lcm[p],e)
ans=1
for p,e in lcm.items():
ans*=pow(p,e,mod)
ans%=mod
print(ans)
vwxyz