結果
問題 | No.1559 Next Rational |
ユーザー | vwxyz |
提出日時 | 2021-10-22 02:03:42 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 43 ms / 2,000 ms |
コード長 | 3,736 bytes |
コンパイル時間 | 162 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 12,160 KB |
最終ジャッジ日時 | 2024-09-22 01:21:19 |
合計ジャッジ時間 | 1,908 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 41 ms
12,032 KB |
testcase_01 | AC | 39 ms
11,904 KB |
testcase_02 | AC | 39 ms
11,904 KB |
testcase_03 | AC | 40 ms
11,904 KB |
testcase_04 | AC | 39 ms
11,904 KB |
testcase_05 | AC | 39 ms
12,160 KB |
testcase_06 | AC | 39 ms
11,904 KB |
testcase_07 | AC | 40 ms
12,032 KB |
testcase_08 | AC | 43 ms
12,160 KB |
testcase_09 | AC | 41 ms
12,032 KB |
testcase_10 | AC | 39 ms
12,032 KB |
testcase_11 | AC | 40 ms
12,160 KB |
testcase_12 | AC | 40 ms
12,032 KB |
testcase_13 | AC | 40 ms
12,160 KB |
testcase_14 | AC | 39 ms
12,032 KB |
testcase_15 | AC | 41 ms
12,032 KB |
testcase_16 | AC | 40 ms
12,032 KB |
testcase_17 | AC | 41 ms
12,032 KB |
ソースコード
import bisect import copy import decimal import fractions import functools import heapq import itertools import math import random import sys from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False): if ntt: convolve=NTT elif fft: convolve=FFT else: def convolve(poly_nume,poly_deno): conv=[0]*(len(poly_nume)+len(poly_deno)-1) for i in range(len(poly_nume)): for j in range(len(poly_deno)): conv[i+j]+=poly_nume[i]*poly_deno[j] if mod: for i in range(len(conv)): conv[i]%=mod return conv while N: poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)] if N%2: poly_nume=convolve(poly_nume,poly_deno_)[1::2] else: poly_nume=convolve(poly_nume,poly_deno_)[::2] poly_deno=convolve(poly_deno,poly_deno_)[::2] if fft and mod: for i in range(len(poly_nume)): poly_nume[i]%=mod for i in range(len(poly_deno)): poly_deno[i]%=mod N//=2 return poly_nume[0] def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=1): self.p=p self.e=e self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] self.cnt=[0]*(N+1) for i in range(1,N+1): ii=i self.cnt[i]=self.cnt[i-1] while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append((self.factorial[-1]*ii)%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Fact(self,N): if N<0: return 0 return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod def Fact_Inve(self,N): if self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu N,A,B,K=map(int,readline().split()) mod=10**9+7 MD=MOD(mod) x=(A**2+B**2+K)*MD.Pow(A*B,-1)%mod ans=Bostan_Mori([A,(B-A*x)%mod],[1,(-x)%mod,1],N-1,mod=mod) print(ans)