結果

問題 No.1559 Next Rational
ユーザー vwxyz
提出日時 2021-10-22 02:03:42
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
AC  
実行時間 43 ms / 2,000 ms
コード長 3,736 bytes
コンパイル時間 162 ms
コンパイル使用メモリ 12,928 KB
実行使用メモリ 12,160 KB
最終ジャッジ日時 2024-09-22 01:21:19
合計ジャッジ時間 1,908 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 15
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
heap.append(item)
heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
if heap and item < heap[0]:
item, heap[0] = heap[0], item
heapq._siftup_max(heap, 0)
return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False):
if ntt:
convolve=NTT
elif fft:
convolve=FFT
else:
def convolve(poly_nume,poly_deno):
conv=[0]*(len(poly_nume)+len(poly_deno)-1)
for i in range(len(poly_nume)):
for j in range(len(poly_deno)):
conv[i+j]+=poly_nume[i]*poly_deno[j]
if mod:
for i in range(len(conv)):
conv[i]%=mod
return conv
while N:
poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)]
if N%2:
poly_nume=convolve(poly_nume,poly_deno_)[1::2]
else:
poly_nume=convolve(poly_nume,poly_deno_)[::2]
poly_deno=convolve(poly_deno,poly_deno_)[::2]
if fft and mod:
for i in range(len(poly_nume)):
poly_nume[i]%=mod
for i in range(len(poly_deno)):
poly_deno[i]%=mod
N//=2
return poly_nume[0]
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=1):
self.p=p
self.e=e
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
self.cnt=[0]*(N+1)
for i in range(1,N+1):
ii=i
self.cnt[i]=self.cnt[i-1]
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append((self.factorial[-1]*ii)%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
if N<0:
return 0
return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod
def Fact_Inve(self,N):
if self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
N,A,B,K=map(int,readline().split())
mod=10**9+7
MD=MOD(mod)
x=(A**2+B**2+K)*MD.Pow(A*B,-1)%mod
ans=Bostan_Mori([A,(B-A*x)%mod],[1,(-x)%mod,1],N-1,mod=mod)
print(ans)
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0