結果
問題 | No.1559 Next Rational |
ユーザー |
![]() |
提出日時 | 2021-10-22 02:03:42 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
AC
|
実行時間 | 43 ms / 2,000 ms |
コード長 | 3,736 bytes |
コンパイル時間 | 162 ms |
コンパイル使用メモリ | 12,928 KB |
実行使用メモリ | 12,160 KB |
最終ジャッジ日時 | 2024-09-22 01:21:19 |
合計ジャッジ時間 | 1,908 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 15 |
ソースコード
import bisectimport copyimport decimalimport fractionsimport functoolsimport heapqimport itertoolsimport mathimport randomimport sysfrom collections import Counter,deque,defaultdictfrom functools import lru_cache,reducefrom heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_maxdef _heappush_max(heap,item):heap.append(item)heapq._siftdown_max(heap, 0, len(heap)-1)def _heappushpop_max(heap, item):if heap and item < heap[0]:item, heap[0] = heap[0], itemheapq._siftup_max(heap, 0)return itemfrom math import gcd as GCDread=sys.stdin.readreadline=sys.stdin.readlinereadlines=sys.stdin.readlinesdef Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False):if ntt:convolve=NTTelif fft:convolve=FFTelse:def convolve(poly_nume,poly_deno):conv=[0]*(len(poly_nume)+len(poly_deno)-1)for i in range(len(poly_nume)):for j in range(len(poly_deno)):conv[i+j]+=poly_nume[i]*poly_deno[j]if mod:for i in range(len(conv)):conv[i]%=modreturn convwhile N:poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)]if N%2:poly_nume=convolve(poly_nume,poly_deno_)[1::2]else:poly_nume=convolve(poly_nume,poly_deno_)[::2]poly_deno=convolve(poly_deno,poly_deno_)[::2]if fft and mod:for i in range(len(poly_nume)):poly_nume[i]%=modfor i in range(len(poly_deno)):poly_deno[i]%=modN//=2return poly_nume[0]def Extended_Euclid(n,m):stack=[]while m:stack.append((n,m))n,m=m,n%mif n>=0:x,y=1,0else:x,y=-1,0for i in range(len(stack)-1,-1,-1):n,m=stack[i]x,y=y,x-(n//m)*yreturn x,yclass MOD:def __init__(self,p,e=1):self.p=pself.e=eself.mod=self.p**self.edef Pow(self,a,n):a%=self.modif n>=0:return pow(a,n,self.mod)else:assert math.gcd(a,self.mod)==1x=Extended_Euclid(a,self.mod)[0]return pow(x,-n,self.mod)def Build_Fact(self,N):assert N>=0self.factorial=[1]self.cnt=[0]*(N+1)for i in range(1,N+1):ii=iself.cnt[i]=self.cnt[i-1]while ii%self.p==0:ii//=self.pself.cnt[i]+=1self.factorial.append((self.factorial[-1]*ii)%self.mod)self.factorial_inve=[None]*(N+1)self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)for i in range(N-1,-1,-1):ii=i+1while ii%self.p==0:ii//=self.pself.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.moddef Fact(self,N):if N<0:return 0return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.moddef Fact_Inve(self,N):if self.cnt[N]:return Nonereturn self.factorial_inve[N]def Comb(self,N,K,divisible_count=False):if K<0 or K>N:return 0retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.modcnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]if divisible_count:return retu,cntelse:retu*=pow(self.p,cnt,self.mod)retu%=self.modreturn retuN,A,B,K=map(int,readline().split())mod=10**9+7MD=MOD(mod)x=(A**2+B**2+K)*MD.Pow(A*B,-1)%modans=Bostan_Mori([A,(B-A*x)%mod],[1,(-x)%mod,1],N-1,mod=mod)print(ans)