結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
37kt_
|
| 提出日時 | 2016-01-13 18:08:52 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 39 ms / 5,000 ms |
| コード長 | 5,840 bytes |
| コンパイル時間 | 1,447 ms |
| コンパイル使用メモリ | 172,216 KB |
| 実行使用メモリ | 10,984 KB |
| 最終ジャッジ日時 | 2024-09-19 18:56:35 |
| 合計ジャッジ時間 | 3,051 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
// template {{{
#include <bits/stdc++.h>
using namespace std;
// #define int long long
#define GET_MACRO(a, b, c, d, NAME, ...) NAME
#define REP2(i, n) REP3(i, 0, n)
#define REP3(i, a, b) REP4(i, a, b, 1)
#define REP4(i, a, b, s) for (ll i = (a); i < (ll)(b); i += s)
#define RREP2(i, n) RREP3(i, 0, n)
#define RREP3(i, a, b) for (ll i = (b) - 1; i >= (ll)(a); i--)
#define rep(...) GET_MACRO(__VA_ARGS__, REP4, REP3, REP2)(__VA_ARGS__)
#define rrep(...) GET_MACRO(__VA_ARGS__,, RREP3, RREP2)(__VA_ARGS__)
#define eb emplace_back
#define ef emplace_front
#define pb pop_back
#define pf pop_front
#define all(c) begin(c), end(c)
#define mp make_pair
#define mt make_tuple
#define fi first
#define se second
#define popcnt __builtin_popcountll
using uint = unsigned;
using ll = long long;
using ull = unsigned long long;
using ld = long double;
using vi = vector<int>;
using vvi = vector<vi>;
template<typename T>
using maxheap = priority_queue<T, vector<T>, less<T>>;
template<typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
const int INF = 1e9 + 10;
const ll LLINF = 1e18 + 10;
const int dx[] = {-1, 0, 1, 0};
const int dy[] = {0, -1, 0, 1};
const int dx8[] = {-1, -1, 0, 1, 1, 1, 0, -1};
const int dy8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template<typename T>
inline T sq(T x){
return x * x;
}
template<typename T, typename U>
inline bool chmax(T &x, U y){
if (x >= y) return false;
x = y;
return true;
}
template<typename T, typename U>
inline bool chmin(T &x, U y){
if (x <= y) return false;
x = y;
return true;
}
template<typename T>
inline T& sort(T &c){
sort(all(c));
return c;
}
template<typename T>
inline T& reverse(T &c){
reverse(all(c));
return c;
}
template<typename T>
inline T& unique(T &c){
sort(all(c));
c.erase(unique(all(c)), end(c));
return c;
}
template<typename T>
inline T sorted(const T &c){
T d = c;
return sort(d);
}
template<typename T>
inline T reversed(const T &c){
T d = c;
return reverse(d);
}
template<typename T>
inline T uniqued(const T &c){
T d = c;
return unique(d);
}
template<typename T>
T power(T x, long long r, const T &e = 1){
T res(e);
while (r){
if (r & 1) res = res * x;
x = x * x;
r >>= 1;
}
return res;
}
// }}}
// modint {{{
const ll MOD = 1e9 + 7;
struct ModInt {
ModInt(): v(0){}
ModInt(ll v): v((v % MOD + MOD) % MOD){}
ModInt(const std::string &s){
v = 0;
for (char c : s){
v = v * 10 + c - '0';
if (v >= MOD) v -= MOD;
}
}
operator ll() const {
return v;
}
ModInt operator+(const ModInt &r) const {
ll res = v + r.v;
if (res >= MOD) res -= MOD;
return res;
}
ModInt operator-(const ModInt &r) const {
ll res = v - r.v;
if (res < 0) res += MOD;
return res;
}
ModInt operator*(const ModInt &r) const {
return v * r.v % MOD;
}
ModInt operator/(const ModInt &r) const {
return v * r.inv() % MOD;
}
ModInt& operator+=(const ModInt &r){
return *this = *this + r;
}
ModInt& operator-=(const ModInt &r){
return *this = *this - r;
}
ModInt& operator*=(const ModInt &r){
return *this = *this * r;
}
ModInt& operator/=(const ModInt &r){
return *this = *this / r;
}
ModInt pow(ll e) const {
ll res = 1, x = v;
while (e > 0){
if (e & 1) res = (res * x) % MOD;
x = (x * x) % MOD;
e >>= 1;
}
return res;
}
ModInt inv() const {
assert(v != 0);
return pow(MOD - 2);
}
private:
ll v;
};
// }}}
// rig matrix {{{
template<typename T>
class RigMatrix {
public:
RigMatrix(): h(0), w(0), z(0), e(1), a(){}
RigMatrix(int h, int w): h(h), w(w), z(0), e(1), a(h, vector<T>(w, z)){}
RigMatrix(int h, int w, int z, int e): h(h), w(w), z(z), e(e), a(h, vector<T>(w, z)){}
int height() const { return h; }
int width() const { return w; }
const T& operator()(int r, int c) const {
assert(0 <= r && r < h);
assert(0 <= c && c < w);
return a[r][c];
}
T& operator()(int r, int c){
assert(0 <= r && r < h);
assert(0 <= c && c < w);
return a[r][c];
}
RigMatrix operator+(const RigMatrix &r) const {
assert(h == r.h && w == r.w);
assert(e == r.e && z == r.z);
RigMatrix res(h, w, z, e);
for (int i = 0; i < h; i++){
for (int j = 0; j < w; j++){
res[i][j] = (*this)(i, j) + r(i, j);
}
}
return res;
}
RigMatrix operator*(const RigMatrix &r) const {
assert(w == r.h);
assert(z == r.z && e == r.e);
RigMatrix res(h, r.w, z, e);
for (int i = 0; i < h; i++){
for (int j = 0; j < r.w; j++){
for (int k = 0; k < w; k++){
res(i, j) = res(i, j) + (*this)(i, k) * r(k, j);
}
}
}
return res;
}
RigMatrix& operator+=(const RigMatrix &r){
assert(h == r.h && w == r.h);
for (int i = 0; i < h; i++){
for (int j = 0; j < w; j++){
(*this)(i, j) = (*this)(i, j) + r(i, j);
}
}
return *this;
}
RigMatrix& operator*=(const RigMatrix &r){
return *this = *this * r;
}
private:
int z, e;
int h, w;
vector<vector<T>> a;
};
// }}}
ll n, k;
ll a[1000010];
void solve1()
{
ModInt s;
rep(i, n) s += a[i];
rep(i, n, k){
a[i] = s;
s += a[i];
s -= a[i - n];
}
ModInt q;
rep(i, k) q += a[i];
cout << a[k - 1] << " " << q << endl;
}
void solve2()
{
RigMatrix<ModInt> A(n, n);
RigMatrix<ModInt> B(n, 1);
RigMatrix<ModInt> E(n, n);
rep(i, n) A(0, i) = 1;
rep(i, 1, n) A(i, i - 1) = 1;
rep(i, n) B(n - i - 1, 0) = a[i];
rep(i, n) E(i, i) = 1;
ll p = (power(A, k - 1, E) * B)(n - 1, 0);
RigMatrix<ModInt> AA(n + 1, n + 1);
RigMatrix<ModInt> BB(n + 1, 1);
RigMatrix<ModInt> EE(n + 1, n + 1);
AA(0, 0) = 2; AA(0, n) = -1;
rep(i, n) AA(i + 1, i) = 1;
rep(i, n) BB(n - i, 0) = a[i];
rep(i, n) BB(0, 0) += a[i];
rrep(i, n) BB(i, 0) += BB(i + 1, 0);
rep(i, n + 1) EE(i, i) = 1;
ll q = (power(AA, k - 1, EE) * BB)(n, 0);
cout << p << " " << q << endl;
}
int main()
{
cin >> n >> k;
rep(i, n) cin >> a[i];
if (n > 30) solve1();
else solve2();
}
37kt_