結果
| 問題 |
No.1720 Division Permutation
|
| コンテスト | |
| ユーザー |
ei1333333
|
| 提出日時 | 2021-10-27 17:22:13 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 261 ms / 4,000 ms |
| コード長 | 12,695 bytes |
| コンパイル時間 | 2,921 ms |
| コンパイル使用メモリ | 209,740 KB |
| 最終ジャッジ日時 | 2025-01-25 07:45:45 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 60 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using int64 = long long;
// const int mod = 1e9 + 7;
const int mod = 998244353;
const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;
struct IoSetup {
IoSetup() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(10);
cerr << fixed << setprecision(10);
}
} iosetup;
template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
os << p.first << " " << p.second;
return os;
}
template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
is >> p.first >> p.second;
return is;
}
template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
for(int i = 0; i < (int) v.size(); i++) {
os << v[i] << (i + 1 != v.size() ? " " : "");
}
return os;
}
template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
for(T &in: v) is >> in;
return is;
}
template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }
template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }
template< typename T = int64 >
vector< T > make_v(size_t a) {
return vector< T >(a);
}
template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}
template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
t = v;
}
template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
for(auto &e: t) fill_v(e, v);
}
template< typename F >
struct FixPoint : F {
FixPoint(F &&f) : F(forward< F >(f)) {}
template< typename... Args >
decltype(auto) operator()(Args &&... args) const {
return F::operator()(*this, forward< Args >(args)...);
}
};
template< typename F >
inline decltype(auto) MFP(F &&f) {
return FixPoint< F >{forward< F >(f)};
}
/**
* @brief Lazy-Segment-Tree(遅延伝搬セグメント木)
* @docs docs/lazy-segment-tree.md
*/
template< typename Monoid, typename OperatorMonoid, typename F, typename G, typename H >
struct LazySegmentTree {
private:
int n{}, sz{}, height{};
vector< Monoid > data;
vector< OperatorMonoid > lazy;
const F f;
const G g;
const H h;
const Monoid M1;
const OperatorMonoid OM0;
inline void update(int k) {
data[k] = f(data[2 * k + 0], data[2 * k + 1]);
}
inline void all_apply(int k, const OperatorMonoid &x) {
data[k] = g(data[k], x);
if(k < sz) lazy[k] = h(lazy[k], x);
}
inline void propagate(int k) {
if(lazy[k] != OM0) {
all_apply(2 * k + 0, lazy[k]);
all_apply(2 * k + 1, lazy[k]);
lazy[k] = OM0;
}
}
public:
LazySegmentTree() = default;
explicit LazySegmentTree(int n, const F f, const G g, const H h,
const Monoid &M1, const OperatorMonoid &OM0)
: n(n), f(f), g(g), h(h), M1(M1), OM0(OM0) {
sz = 1;
height = 0;
while(sz < n) sz <<= 1, height++;
data.assign(2 * sz, M1);
lazy.assign(2 * sz, OM0);
}
explicit LazySegmentTree(const vector< Monoid > &v, const F f, const G g, const H h,
const Monoid &M1, const OperatorMonoid &OM0)
: LazySegmentTree(v.size(), f, g, h, M1, OM0) {
build(v);
}
void build(const vector< Monoid > &v) {
assert(n == (int) v.size());
for(int k = 0; k < n; k++) data[k + sz] = v[k];
for(int k = sz - 1; k > 0; k--) update(k);
}
void set(int k, const Monoid &x) {
k += sz;
for(int i = height; i > 0; i--) propagate(k >> i);
data[k] = x;
for(int i = 1; i <= height; i++) update(k >> i);
}
Monoid get(int k) {
k += sz;
for(int i = height; i > 0; i--) propagate(k >> i);
return data[k];
}
Monoid operator[](int k) {
return get(k);
}
Monoid prod(int l, int r) {
if(l >= r) return M1;
l += sz;
r += sz;
for(int i = height; i > 0; i--) {
if(((l >> i) << i) != l) propagate(l >> i);
if(((r >> i) << i) != r) propagate((r - 1) >> i);
}
Monoid L = M1, R = M1;
for(; l < r; l >>= 1, r >>= 1) {
if(l & 1) L = f(L, data[l++]);
if(r & 1) R = f(data[--r], R);
}
return f(L, R);
}
Monoid all_prod() const {
return data[1];
}
void apply(int k, const OperatorMonoid &x) {
k += sz;
for(int i = height; i > 0; i--) propagate(k >> i);
data[k] = g(data[k], x);
for(int i = 1; i <= height; i++) update(k >> i);
}
void apply(int l, int r, const OperatorMonoid &x) {
if(l >= r) return;
l += sz;
r += sz;
for(int i = height; i > 0; i--) {
if(((l >> i) << i) != l) propagate(l >> i);
if(((r >> i) << i) != r) propagate((r - 1) >> i);
}
{
int l2 = l, r2 = r;
for(; l < r; l >>= 1, r >>= 1) {
if(l & 1) all_apply(l++, x);
if(r & 1) all_apply(--r, x);
}
l = l2, r = r2;
}
for(int i = 1; i <= height; i++) {
if(((l >> i) << i) != l) update(l >> i);
if(((r >> i) << i) != r) update((r - 1) >> i);
}
}
template< typename C >
int find_first(int l, const C &check) {
if(l >= n) return n;
l += sz;
for(int i = height; i > 0; i--) propagate(l >> i);
Monoid sum = M1;
do {
while((l & 1) == 0) l >>= 1;
if(check(f(sum, data[l]))) {
while(l < sz) {
propagate(l);
l <<= 1;
auto nxt = f(sum, data[l]);
if(not check(nxt)) {
sum = nxt;
l++;
}
}
return l + 1 - sz;
}
sum = f(sum, data[l++]);
} while((l & -l) != l);
return n;
}
template< typename C >
int find_last(int r, const C &check) {
if(r <= 0) return -1;
r += sz;
for(int i = height; i > 0; i--) propagate((r - 1) >> i);
Monoid sum = 0;
do {
r--;
while(r > 1 and (r & 1)) r >>= 1;
if(check(f(data[r], sum))) {
while(r < sz) {
propagate(r);
r = (r << 1) + 1;
auto nxt = f(data[r], sum);
if(not check(nxt)) {
sum = nxt;
r--;
}
}
return r - sz;
}
sum = f(data[r], sum);
} while((r & -r) != r);
return -1;
}
};
template< typename Monoid, typename OperatorMonoid, typename F, typename G, typename H >
LazySegmentTree< Monoid, OperatorMonoid, F, G, H > get_lazy_segment_tree
(int N, const F &f, const G &g, const H &h, const Monoid &M1, const OperatorMonoid &OM0) {
return LazySegmentTree{N, f, g, h, M1, OM0};
}
template< typename Monoid, typename OperatorMonoid, typename F, typename G, typename H >
LazySegmentTree< Monoid, OperatorMonoid, F, G, H > get_lazy_segment_tree
(const vector< Monoid > &v, const F &f, const G &g, const H &h, const Monoid &M1, const OperatorMonoid &OM0) {
return LazySegmentTree{v, f, g, h, M1, OM0};
}
struct PermutationTree {
public:
enum NodeType {
JOIN_ASC,
JOIN_DESC,
LEAF,
CUT
};
struct Node {
NodeType type;
int l, r; // [l, r)
int min_v, max_v; // [min_v, max_v)
vector< Node * > ch;
size_t size() const { return r - l; }
bool is_join() const { return type == JOIN_ASC or type == JOIN_DESC; };
bool is_leaf() const { return type == LEAF; }
bool is_cut() const { return type == CUT; }
};
using NP = Node *;
PermutationTree() = default;
private:
static void add_child(NP t, NP c) {
t->ch.emplace_back(c);
t->l = min(t->l, c->l);
t->r = max(t->r, c->r);
t->min_v = min(t->min_v, c->min_v);
t->max_v = max(t->max_v, c->max_v);
}
public:
static NP build(vector< int > &A) {
int n = (int) A.size();
vector< int > desc{-1}; // A[desc[0]]>A[desc[1]]>...
vector< int > asc{-1}; // A[asc[0]]<A[asc[1]]<...
vector< NP > st;
auto f = [](int a, int b) { return min(a, b); };
auto g = [](int a, int b) { return a + b; };
constexpr int lim = (1 << 30) - 1;
auto seg = get_lazy_segment_tree(vector< int >(n), f, g, g, lim, 0);
for(int i = 0; i < n; i++) {
while(~desc.back() and A[i] > A[desc.back()]) {
seg.apply(desc[desc.size() - 2] + 1, desc.back() + 1, A[i] - A[desc.back()]);
desc.pop_back();
}
while(~asc.back() and A[i] < A[asc.back()]) {
seg.apply(asc[asc.size() - 2] + 1, asc.back() + 1, A[asc.back()] - A[i]);
asc.pop_back();
}
desc.emplace_back(i);
asc.emplace_back(i);
NP t = new Node{LEAF, i, i + 1, A[i], A[i] + 1, {}};
for(;;) {
NodeType type = CUT;
if(not st.empty()) {
if(st.back()->max_v == t->min_v) {
type = JOIN_ASC;
} else if(t->max_v == st.back()->min_v) {
type = JOIN_DESC;
}
}
if(type != CUT) {
NP r = st.back();
if(type != r->type) {
r = new Node{type, r->l, r->r, r->min_v, r->max_v, {r}};
}
add_child(r, t);
st.pop_back();
t = r;
} else if(seg.prod(0, i + 1 - (int) t->size()) == 0) {
t = new Node{CUT, t->l, t->r, t->min_v, t->max_v, {t}};
do {
add_child(t, st.back());
st.pop_back();
} while(t->max_v - t->min_v != t->size());
reverse(begin(t->ch), end(t->ch));
} else {
break;
}
}
st.emplace_back(t);
seg.apply(0, i + 1, -1);
}
return st[0];
}
};
/**
* @brief Montgomery ModInt
*/
template< uint32_t mod, bool fast = false >
struct MontgomeryModInt {
using mint = MontgomeryModInt;
using i32 = int32_t;
using i64 = int64_t;
using u32 = uint32_t;
using u64 = uint64_t;
static constexpr u32 get_r() {
u32 ret = mod;
for(i32 i = 0; i < 4; i++) ret *= 2 - mod * ret;
return ret;
}
static constexpr u32 r = get_r();
static constexpr u32 n2 = -u64(mod) % mod;
static_assert(r * mod == 1, "invalid, r * mod != 1");
static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");
u32 x;
MontgomeryModInt() : x{} {}
MontgomeryModInt(const i64 &a)
: x(reduce(u64(fast ? a : (a % mod + mod)) * n2)) {}
static constexpr u32 reduce(const u64 &b) {
return u32(b >> 32) + mod - u32((u64(u32(b) * r) * mod) >> 32);
}
mint &operator+=(const mint &p) {
if(i32(x += p.x - 2 * mod) < 0) x += 2 * mod;
return *this;
}
mint &operator-=(const mint &p) {
if(i32(x -= p.x) < 0) x += 2 * mod;
return *this;
}
mint &operator*=(const mint &p) {
x = reduce(u64(x) * p.x);
return *this;
}
mint &operator/=(const mint &p) {
*this *= p.inverse();
return *this;
}
mint operator-() const { return mint() - *this; }
mint operator+(const mint &p) const { return mint(*this) += p; }
mint operator-(const mint &p) const { return mint(*this) -= p; }
mint operator*(const mint &p) const { return mint(*this) *= p; }
mint operator/(const mint &p) const { return mint(*this) /= p; }
bool operator==(const mint &p) const { return (x >= mod ? x - mod : x) == (p.x >= mod ? p.x - mod : p.x); }
bool operator!=(const mint &p) const { return (x >= mod ? x - mod : x) != (p.x >= mod ? p.x - mod : p.x); }
u32 get() const {
u32 ret = reduce(x);
return ret >= mod ? ret - mod : ret;
}
mint pow(u64 n) const {
mint ret(1), mul(*this);
while(n > 0) {
if(n & 1) ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
mint inverse() const {
return pow(mod - 2);
}
friend ostream &operator<<(ostream &os, const mint &p) {
return os << p.get();
}
friend istream &operator>>(istream &is, mint &a) {
i64 t;
is >> t;
a = mint(t);
return is;
}
static u32 get_mod() { return mod; }
};
using modint = MontgomeryModInt< mod >;
const int MOD = 998244353;
using mint = MontgomeryModInt< MOD >;
int main() {
int N, K;
cin >> N >> K;
vector< int > A(N);
cin >> A;
for(auto &a: A) --a;
using NP = PermutationTree::Node *;
auto dp = make_v< mint >(K + 1, N + 1);
dp[0][0] = 1;
MFP([&](auto rec, NP r) -> void {
if(r->is_cut() or r->is_leaf()) {
for(int k = 0; k < K; k++) {
dp[k + 1][r->r] += dp[k][r->l];
}
}
vector< modint > sum(K);
for(auto &c: r->ch) {
rec(c);
if(r->is_join()) {
for(int k = 0; k < K; k++) {
dp[k + 1][c->r] += sum[k];
sum[k] += dp[k][c->l];
}
}
}
})(PermutationTree::build(A));
for(int i = 1; i <= K; i++) {
cout << dp[i][N] << "\n";
}
}
ei1333333