結果

問題 No.3030 ミラー・ラビン素数判定法のテスト
ユーザー nonamaenonamae
提出日時 2021-10-28 15:28:25
言語 C
(gcc 12.3.0)
結果
AC  
実行時間 37 ms / 9,973 ms
コード長 10,283 bytes
コンパイル時間 584 ms
コンパイル使用メモリ 44,032 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-16 23:41:42
合計ジャッジ時間 1,236 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 23 ms
5,248 KB
testcase_05 AC 20 ms
5,248 KB
testcase_06 AC 11 ms
5,248 KB
testcase_07 AC 10 ms
5,248 KB
testcase_08 AC 10 ms
5,248 KB
testcase_09 AC 37 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region opt
#pragma GCC optimize("O3")
#pragma GCC target("avx2")
// #pragma GCC optimize("fast-math") 
// #pragma GCC optimize("unroll-loops")
#pragma endregion opt

#pragma region header
#define _GNU_SOURCE
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <string.h>
#include <time.h>
#pragma endregion header

#pragma region type
/* signed integer */
typedef   int8_t      i8;
typedef   int16_t     i16;
typedef   int32_t     i32;
typedef   int64_t     i64;
typedef __int128_t    i128;
/* unsigned integer */
typedef   uint8_t     u8;
typedef   uint16_t    u16;
typedef   uint32_t    u32;
typedef   uint64_t    u64;
typedef __uint128_t   u128;
/* floating point number */
typedef   float       f32;
typedef   double      f64;
typedef   long double f80;
#pragma endregion type

#pragma region macro
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define SWAP(a, b) (((a) ^= (b)), ((b) ^= (a)), ((a) ^= (b)))

#define POPCNT32(a) __builtin_popcount((a))
#define POPCNT64(a) __builtin_popcountll((a))
#define CTZ32(a) __builtin_ctz((a))
#define CLZ32(a) __builtin_clz((a))
#define CTZ64(a) __builtin_ctzll((a))
#define CLZ64(a) __builtin_clzll((a))
#define HAS_SINGLE_BIT32(a) (__builtin_popcount((a)) == (1))
#define HAS_SINGLE_BIT64(a) (__builtin_popcountll((a)) == (1))
#define MSB32(a) ((31) - __builtin_clz((a)))
#define MSB64(a) ((63) - __builtin_clzll((a)))
#define BIT_WIDTH32(a) ((a) ? ((32) - __builtin_clz((a))) : (0))
#define BIT_WIDTH64(a) ((a) ? ((64) - __builtin_clzll((a))) : (0))
#define LSBit(a) ((a) & (-(a)))
#define CLSBit(a) ((a) & ((a) - (1)))
#define BIT_CEIL32(a) ((!(a)) ? (1) : ((POPCNT32(a)) == (1) ? ((1u) << ((31) - CLZ32((a)))) : ((1u) << ((32) - CLZ32(a)))))
#define BIT_CEIL64(a) ((!(a)) ? (1) : ((POPCNT64(a)) == (1) ? ((1ull) << ((63) - CLZ64((a)))) : ((1ull) << ((64) - CLZ64(a)))))
#define BIT_FLOOR32(a) ((!(a)) ? (0) : ((1u) << ((31) - CLZ32((a)))))
#define BIT_FLOOR64(a) ((!(a)) ? (0) : ((1ull) << ((63) - CLZ64((a)))))
#define _ROTL64(x, s) (((x) << ((s) % (64))) | (((x) >> ((64) - ((s) % (64))))))
#define _ROTR64(x, s) (((x) >> ((s) % (64))) | (((x) << ((64) - ((s) % (64))))))
#define ROTL64(x, s) (((s) == (0)) ? (x) : ((((i128)(s)) < (0)) ? (_ROTR64((x), -(s))) : (_ROTL64((x), (s)))))
#define ROTR64(x, s) (((s) == (0)) ? (x) : ((((i128)(s)) < (0)) ? (_ROTL64((x), -(s))) : (_ROTR64((x), (s)))))
#pragma endregion macro

#pragma region io
static inline int read_int(void) {
  // -2147483648 ~ 2147483647 (> 10 ^ 9)
  int c, x = 0, f = 1;
  while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return f * x;
}
static inline i32 in_i32(void) {
  // -2147483648 ~ 2147483647 (> 10 ^ 9)
  i32 c, x = 0, f = 1;
  while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return f * x;
}
static inline u32 in_u32(void) {
  // 0 ~ 4294967295 (> 10 ^ 9)
  u32 c, x = 0;
  while (c = getchar_unlocked(), c < 48 || c > 57);
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return x;
}
static inline i64 in_i64(void) {
  // -9223372036854775808 ~ 9223372036854775807 (> 10 ^ 18)
  i64 c, x = 0, f = 1;
  while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return f * x;
}
static inline u64 in_u64(void) {
  // 0 ~ 18446744073709551615 (> 10 ^ 19)
  u64 c, x = 0;
  while (c = getchar_unlocked(), c < 48 || c > 57);
  while (47 < c && c < 58) {
    x = x * 10 + c - 48;
    c = getchar_unlocked();
  }
  return x;
}
static inline void write_int_inner(int x) {
  if (x >= 10) write_int_inner(x / 10);
  putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void write_int(int x) {
  if (x < 0) {
    putchar_unlocked('-');
    x = -x;
  }
  write_int_inner(x);
}
static inline void out_i32_inner(i32 x) {
  if (x >= 10) out_i32_inner(x / 10);
  putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void out_i32(i32 x) {
  if (x < 0) {
    putchar_unlocked('-');
    x = -x;
  }
  out_i32_inner(x);
}
static inline void out_u32(u32 x) {
  if (x >= 10) out_u32(x / 10);
  putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void out_i64_inner(i64 x) {
  if (x >= 10) out_i64_inner(x / 10);
  putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void out_i64(i64 x) {
  if (x < 0) {
    putchar_unlocked('-');
    x = -x;
  }
  out_i64_inner(x);
}
static inline void out_u64(u64 x) {
  if (x >= 10) out_u64(x / 10);
  putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void NL(void) { putchar_unlocked('\n'); }
static inline void SP(void) { putchar_unlocked(' '); }
#pragma endregion io

#pragma region montgomery_32bit
typedef uint32_t m32;
m32 _one_m32(u32 mod) { return -1u % mod + 1u; }
m32 _r2_m32(u32 mod) { return (u64)(i64)-1 % mod + 1u; }
m32 _inv_m32(u32 mod) {
  u32 inv = mod;
  for (int i = 0; i < 4; i++) inv *= 2 - mod * inv;
  return inv;
}
m32 _reduce_m32(u64 a, m32 inv, u32 mod) {
  i64 z = (a >> 32) - ((((u32)a * inv) * (u64)mod) >> 32);
  return z < 0 ? z + mod : z;
}
m32 to_m32(u32 a, m32 r2, m32 inv, u32 mod) { return _reduce_m32((u64)a * r2, inv, mod); }
u32 from_m32(m32 A, m32 inv, u32 mod) {
  m32 t = _reduce_m32((u64)A, inv, mod) - mod;
  return t + (mod & -(t >> 31u));
}
m32 add_m32(m32 A, m32 B, u32 mod2) {
  // assert(mod2 == (mod << 1));
  A += B - mod2;
  A += mod2 & -(A >> 31u);
  return A;
}
m32 sub_m32(m32 A, m32 B, u32 mod2) {
  // assert(mod2 == (mod << 1));
  A -= B;
  A += mod2 & -(A >> 31u);
  return A;
}
m32 min_m32(m32 A, u32 mod2) {
  // assert(mod2 == (mod << 1));
  return sub_m32(0u, A, mod2);
}
m32 mul_m32(m32 A, m32 B, m32 inv, u32 mod) { return _reduce_m32((u64)A * B, inv, mod); }
m32 pow_m32(m32 A, i64 n, m32 inv, u32 mod) {
  m32 ret = _one_m32(mod);
  while (n > 0) {
    if (n & 1) ret = mul_m32(ret, A, inv, mod);
    A = mul_m32(A, A, inv, mod);
    n >>= 1;
  }
  return ret;
}
m32 inv_m32(m32 A, m32 inv, u32 mod) { return pow_m32(A, (i64)mod - 2, inv, mod); }
m32 div_m32(m32 A, m32 B, m32 inv, u32 mod) {
  /* assert(is_prime(mod)); */
  return mul_m32(A, inv_m32(B, inv, mod), inv, mod);
}
m32 in_m32(m32 r2, m32 inv, u32 mod) {
  u32 c, a = 0;
  while (c = getchar_unlocked(), c < 48 || c > 57);
  while (47 < c && c < 58) {
    a = a * 10 + c - 48;
    c = getchar_unlocked();
  }
  return to_m32(a, r2, inv, mod);
}
void out_m32(m32 A, m32 inv, u32 mod) {
  u32 a = from_m32(A, inv, mod);
  out_u32(a);
}
#pragma endregion montgomery_32bit

#pragma region montgomery_64bit
typedef uint64_t m64;
m64 _one_m64(u64 mod) { return (u64)-1ull % mod + 1; }
m64 _r2_m64(u64 mod) { return (u128)(i128)-1 % mod + 1; }
m64 _inv_m64(u64 mod) {
  u64 inv = mod;
  for (int i = 0; i < 6; i++) inv *= 2 - mod * inv;
  return inv;
/**
  u64 u = 1, v = 0, x = 1ull << 63;
  for (int i = 0; i < 64; i++) {
    if (u & 1) u = (u + mod) >> 1, v = (v >> 1) + x;
    else u >>= 1, v >>= 1;
  }
  return -v;
*/
}
m64 _reduce_m64(u128 a, m64 inv, u64 mod) {
  i128 A = (a >> 64) - ((((u64)a * inv) * (u128)mod) >> 64);
  return A < 0 ? A + mod : A;
}
m64 to_m64(u64 a, m64 r2, m64 inv, u64 mod) { return _reduce_m64((u128)a * r2, inv, mod); }
u64 from_m64(m64 A, m64 inv, u64 mod) {
  m64 t = _reduce_m64((u128)A, inv, mod) - mod;
  return t + (mod & -(t >> 63u));
}
m64 add_m64(m64 A, m64 B, u64 mod2) {
  // assert(mod2 == (mod << 1u));
  A += B - mod2;
  A += mod2 & -(A >> 63u);
  return A;
}
m64 sub_m64(m64 A, m64 B, u64 mod2) {
  // assert(mod2 == (mod << 1u));
  A -= B;
  A += mod2 & -(A >> 63u);
  return A;
}
m64 min_m64(m64 A, u64 mod2) {
  // assert(mod2 == (mod << 1u));
  return sub_m64(0, A, mod2);
}
m64 mul_m64(m64 A, m64 B, m64 inv, u64 mod) { return _reduce_m64((u128)A * B, inv, mod); }
m64 pow_m64(m64 A, i64 n, m64 inv, u64 mod) {
  m64 ret = _one_m64(mod);
  while (n > 0) {
    if (n & 1) ret = mul_m64(ret, A, inv, mod);
    A = mul_m64(A, A, inv, mod);
    n >>= 1;
  }
  return ret;
}
m64 inv_m64(m64 A, m64 inv, u64 mod) { return pow_m64(A, (i64)mod - 2, inv, mod); }
m64 div_m64(m64 A, m64 B, m64 inv, u64 mod) { return mul_m64(A, inv_m64(B, inv, mod), inv, mod); }
m64 in_m64(m64 r2, m64 inv, u64 mod) {
  u64 c, a = 0;
  while (c = getchar_unlocked(), c < 48 || c > 57);
  while (47 < c && c < 58) {
    a = a * 10 + c - 48;
    c = getchar_unlocked();
  }
  return to_m64(a, r2, inv, mod);
}
void out_m64(m64 A, m64 inv, u64 mod) {
  u64 a = from_m64(A, inv, mod);
  out_u64(a);
}
#pragma endregion montgomery_64bit

#pragma region miller_rabin_primary_test
bool is_prime32(u32 n) {
  u32 m = n - 1;
  m32 r2 = _r2_m32(n);
  m32 inv = _inv_m32(n);
  m32 one = _one_m32(n);
  m32 rev = to_m32(m, r2, inv, n);
  u32 d = m >> CTZ32(m);
  u32 base[] = { 2u, 7u, 61u };
  for (int i = 0; i < 3; i++) {
    if (n <= base[i]) break;
    u32 t = d;
    m32 y = pow_m32(to_m32(base[i], r2, inv, n), t, inv, n);
    while (t != m && y != one && y != rev) {
      y = mul_m32(y, y, inv, n);
      t <<= 1;
    }
    if (y != rev && (!(t & 1))) return false;
  }
  return true;
}
bool is_prime64(u64 n) {
  u64 m = n - 1;
  m64 r2 = _r2_m64(n);
  m64 inv = _inv_m64(n);
  m64 one = _one_m64(n);
  m64 rev = to_m64(m, r2, inv, n);
  u64 d = m >> CTZ64(m);
  u64 base[] = { 2ul, 325ul, 9375ul, 28178ul, 450775ul, 9780504ul, 1795265022ul };
  for (int i = 0; i < 7; i++) {
    if (n <= base[i]) break;
    u64 t = d;
    m64 y = pow_m64(to_m64(base[i], r2, inv, n), t, inv, n);
    while (t != m && y != one && y != rev) {
      y = mul_m64(y, y, inv, n);
      t <<= 1;
    }
    if (y != rev && (!(t & 1))) return false;
  }
  return true;
}
bool is_prime(u64 n) {
  if (n <= 3ul) return n == 2ul || n == 3ul;
  if (!(n & 1)) return false;
  if (n < ((u32)1u << 31)) return is_prime32((u32)n);
  return is_prime64(n);
}
#pragma endregion miller_rabin_primary_test

void Main(void) {
  int n = read_int();
  while (n--) {
    u64 x = in_u64();
    out_u64(x);
    SP();
    write_int(is_prime(x));
    NL();
  }
}

int main(void) {
  Main();
  return 0;
}
0