結果

問題 No.1728 [Cherry 3rd Tune] Bullet
ユーザー NyaanNyaanNyaanNyaan
提出日時 2021-10-29 21:37:40
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 170 ms / 2,000 ms
コード長 31,006 bytes
コンパイル時間 4,119 ms
コンパイル使用メモリ 292,424 KB
実行使用メモリ 4,384 KB
最終ジャッジ日時 2023-07-29 07:20:26
合計ジャッジ時間 4,985 ms
ジャッジサーバーID
(参考情報)
judge13 / judge14
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
4,376 KB
testcase_01 AC 1 ms
4,384 KB
testcase_02 AC 2 ms
4,376 KB
testcase_03 AC 1 ms
4,380 KB
testcase_04 AC 2 ms
4,380 KB
testcase_05 AC 2 ms
4,380 KB
testcase_06 AC 2 ms
4,380 KB
testcase_07 AC 2 ms
4,380 KB
testcase_08 AC 2 ms
4,376 KB
testcase_09 AC 2 ms
4,384 KB
testcase_10 AC 2 ms
4,380 KB
testcase_11 AC 1 ms
4,376 KB
testcase_12 AC 2 ms
4,380 KB
testcase_13 AC 2 ms
4,380 KB
testcase_14 AC 2 ms
4,376 KB
testcase_15 AC 2 ms
4,380 KB
testcase_16 AC 2 ms
4,376 KB
testcase_17 AC 2 ms
4,376 KB
testcase_18 AC 2 ms
4,380 KB
testcase_19 AC 2 ms
4,380 KB
testcase_20 AC 2 ms
4,384 KB
testcase_21 AC 2 ms
4,376 KB
testcase_22 AC 2 ms
4,376 KB
testcase_23 AC 170 ms
4,376 KB
testcase_24 AC 109 ms
4,380 KB
testcase_25 AC 1 ms
4,380 KB
testcase_26 AC 2 ms
4,380 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 *  date : 2021-10-29 21:37:30
 */

#define NDEBUG
using namespace std;

// intrinstic
#include <immintrin.h>

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <cctype>
#include <cfenv>
#include <cfloat>
#include <chrono>
#include <cinttypes>
#include <climits>
#include <cmath>
#include <complex>
#include <cstdarg>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <initializer_list>
#include <iomanip>
#include <ios>
#include <iostream>
#include <istream>
#include <iterator>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <new>
#include <numeric>
#include <ostream>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <streambuf>
#include <string>
#include <tuple>
#include <type_traits>
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>

// utility
namespace Nyaan {
using ll = long long;
using i64 = long long;
using u64 = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <typename T>
using V = vector<T>;
template <typename T>
using VV = vector<vector<T>>;
using vi = vector<int>;
using vl = vector<long long>;
using vd = V<double>;
using vs = V<string>;
using vvi = vector<vector<int>>;
using vvl = vector<vector<long long>>;

template <typename T, typename U>
struct P : pair<T, U> {
  template <typename... Args>
  P(Args... args) : pair<T, U>(args...) {}

  using pair<T, U>::first;
  using pair<T, U>::second;

  T &x() { return first; }
  const T &x() const { return first; }
  U &y() { return second; }
  const U &y() const { return second; }

  P &operator+=(const P &r) {
    first += r.first;
    second += r.second;
    return *this;
  }
  P &operator-=(const P &r) {
    first -= r.first;
    second -= r.second;
    return *this;
  }
  P &operator*=(const P &r) {
    first *= r.first;
    second *= r.second;
    return *this;
  }
  P operator+(const P &r) const { return P(*this) += r; }
  P operator-(const P &r) const { return P(*this) -= r; }
  P operator*(const P &r) const { return P(*this) *= r; }
};

using pl = P<ll, ll>;
using pi = P<int, int>;
using vp = V<pl>;

constexpr int inf = 1001001001;
constexpr long long infLL = 4004004004004004004LL;

template <typename T>
int sz(const T &t) {
  return t.size();
}

template <typename T, typename U>
inline bool amin(T &x, U y) {
  return (y < x) ? (x = y, true) : false;
}
template <typename T, typename U>
inline bool amax(T &x, U y) {
  return (x < y) ? (x = y, true) : false;
}

template <typename T>
inline T Max(const vector<T> &v) {
  return *max_element(begin(v), end(v));
}
template <typename T>
inline T Min(const vector<T> &v) {
  return *min_element(begin(v), end(v));
}
template <typename T>
inline long long Sum(const vector<T> &v) {
  return accumulate(begin(v), end(v), 0LL);
}

template <typename T>
int lb(const vector<T> &v, const T &a) {
  return lower_bound(begin(v), end(v), a) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, const T &a) {
  return upper_bound(begin(v), end(v), a) - begin(v);
}

constexpr long long TEN(int n) {
  long long ret = 1, x = 10;
  for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);
  return ret;
}

template <typename T, typename U>
pair<T, U> mkp(const T &t, const U &u) {
  return make_pair(t, u);
}

template <typename T>
vector<T> mkrui(const vector<T> &v, bool rev = false) {
  vector<T> ret(v.size() + 1);
  if (rev) {
    for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];
  } else {
    for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];
  }
  return ret;
};

template <typename T>
vector<T> mkuni(const vector<T> &v) {
  vector<T> ret(v);
  sort(ret.begin(), ret.end());
  ret.erase(unique(ret.begin(), ret.end()), ret.end());
  return ret;
}

template <typename F>
vector<int> mkord(int N, F f) {
  vector<int> ord(N);
  iota(begin(ord), end(ord), 0);
  sort(begin(ord), end(ord), f);
  return ord;
}

template <typename T>
vector<int> mkinv(vector<T> &v) {
  int max_val = *max_element(begin(v), end(v));
  vector<int> inv(max_val + 1, -1);
  for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;
  return inv;
}

}  // namespace Nyaan

// bit operation
namespace Nyaan {
__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {
  return _mm_popcnt_u64(a);
}
inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }
inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }
template <typename T>
inline int gbit(const T &a, int i) {
  return (a >> i) & 1;
}
template <typename T>
inline void sbit(T &a, int i, bool b) {
  if (gbit(a, i) != b) a ^= T(1) << i;
}
constexpr long long PW(int n) { return 1LL << n; }
constexpr long long MSK(int n) { return (1LL << n) - 1; }
}  // namespace Nyaan

// inout
namespace Nyaan {

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &p) {
  os << p.first << " " << p.second;
  return os;
}
template <typename T, typename U>
istream &operator>>(istream &is, pair<T, U> &p) {
  is >> p.first >> p.second;
  return is;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  int s = (int)v.size();
  for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];
  return os;
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (auto &x : v) is >> x;
  return is;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &... u) {
  cin >> t;
  in(u...);
}

void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &... u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}

void outr() {}
template <typename T, class... U, char sep = ' '>
void outr(const T &t, const U &... u) {
  cout << t;
  outr(u...);
}

struct IoSetupNya {
  IoSetupNya() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(15);
    cerr << fixed << setprecision(7);
  }
} iosetupnya;

}  // namespace Nyaan

// debug
namespace DebugImpl {

template <typename U, typename = void>
struct is_specialize : false_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, typename U::iterator, void>::type>
    : true_type {};
template <typename U>
struct is_specialize<
    U, typename conditional<false, decltype(U::first), void>::type>
    : true_type {};
template <typename U>
struct is_specialize<U, enable_if_t<is_integral<U>::value, void>> : true_type {
};

void dump(const char& t) { cerr << t; }

void dump(const string& t) { cerr << t; }

void dump(const bool& t) { cerr << (t ? "true" : "false"); }

template <typename U,
          enable_if_t<!is_specialize<U>::value, nullptr_t> = nullptr>
void dump(const U& t) {
  cerr << t;
}

template <typename T>
void dump(const T& t, enable_if_t<is_integral<T>::value>* = nullptr) {
  string res;
  if (t == Nyaan::inf) res = "inf";
  if constexpr (is_signed<T>::value) {
    if (t == -Nyaan::inf) res = "-inf";
  }
  if constexpr (sizeof(T) == 8) {
    if (t == Nyaan::infLL) res = "inf";
    if constexpr (is_signed<T>::value) {
      if (t == -Nyaan::infLL) res = "-inf";
    }
  }
  if (res.empty()) res = to_string(t);
  cerr << res;
}

template <typename T, typename U>
void dump(const pair<T, U>&);
template <typename T>
void dump(const pair<T*, int>&);

template <typename T>
void dump(const T& t,
          enable_if_t<!is_void<typename T::iterator>::value>* = nullptr) {
  cerr << "[ ";
  for (auto it = t.begin(); it != t.end();) {
    dump(*it);
    cerr << (++it == t.end() ? "" : ", ");
  }
  cerr << " ]";
}

template <typename T, typename U>
void dump(const pair<T, U>& t) {
  cerr << "( ";
  dump(t.first);
  cerr << ", ";
  dump(t.second);
  cerr << " )";
}

template <typename T>
void dump(const pair<T*, int>& t) {
  cerr << "[ ";
  for (int i = 0; i < t.second; i++) {
    dump(t.first[i]);
    cerr << (i == t.second - 1 ? "" : ", ");
  }
  cerr << " ]";
}

void trace() { cerr << endl; }
template <typename Head, typename... Tail>
void trace(Head&& head, Tail&&... tail) {
  cerr << " ";
  dump(head);
  if (sizeof...(tail) != 0) cerr << ",";
  trace(forward<Tail>(tail)...);
}

}  // namespace DebugImpl

#ifdef NyaanDebug
#define trc(...)                            \
  do {                                      \
    cerr << "## " << #__VA_ARGS__ << " = "; \
    DebugImpl::trace(__VA_ARGS__);          \
  } while (0)
#else
#define trc(...) (void(0))
#endif

// macro
#define each(x, v) for (auto&& x : v)
#define each2(x, y, v) for (auto&& [x, y] : v)
#define all(v) (v).begin(), (v).end()
#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)
#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)
#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)
#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)
#define reg(i, a, b) for (long long i = (a); i < (b); i++)
#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)
#define fi first
#define se second
#define ini(...)   \
  int __VA_ARGS__; \
  in(__VA_ARGS__)
#define inl(...)         \
  long long __VA_ARGS__; \
  in(__VA_ARGS__)
#define ins(...)      \
  string __VA_ARGS__; \
  in(__VA_ARGS__)
#define in2(s, t)                           \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i]);                         \
  }
#define in3(s, t, u)                        \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i]);                   \
  }
#define in4(s, t, u, v)                     \
  for (int i = 0; i < (int)s.size(); i++) { \
    in(s[i], t[i], u[i], v[i]);             \
  }
#define die(...)             \
  do {                       \
    Nyaan::out(__VA_ARGS__); \
    return;                  \
  } while (0)

namespace Nyaan {
void solve();
}
int main() { Nyaan::solve(); }

//

/*
#include "fps/ntt-friendly-fps.hpp"

#include "matrix/inverse-matrix.hpp"

#include "misc/rng.hpp"

#include "misc/timer.hpp"

#include "modint/montgomery-modint.hpp"

#include "modulo/binomial.hpp"

//
using namespace Nyaan;
using mint = LazyMontgomeryModInt<998244353>;
Binomial<mint> C;
using fps = FormalPowerSeries<mint>;
using namespace Nyaan;

fps convolution998244353_large(const fps &a, const fps &b) {
  int len = 1 << 23;
  if (a.empty() || b.empty()) return fps{};
  if ((int)a.size() + (int)b.size() - 1 <= len) return a * b;
  vector<fps> as, bs;
  for (int i = 0; i < (int)a.size(); i += len / 2) {
    fps v{begin(a) + i, begin(a) + min<int>(i + len / 2, a.size())};
    v.resize(len);
    v.ntt();
    as.push_back(v);
  }
  for (int i = 0; i < (int)b.size(); i += len / 2) {
    fps v{begin(b) + i, begin(b) + min<int>(i + len / 2, b.size())};
    v.resize(len);
    v.ntt();
    bs.push_back(v);
  }
  vector<fps> cs(as.size() + bs.size() - 1, fps(len));
  for (int i = 0; i < (int)as.size(); i++) {
    for (int j = 0; j < (int)bs.size(); j++) {
      for (int k = 0; k < len; k++) {
        cs[i + j][k] += as[i][k] * bs[j][k];
      }
    }
  }
  for (auto &v : cs) v.intt();

  fps c(a.size() + b.size() - 1);
  for (int i = 0; i < (int)cs.size(); i++) {
    int offset = len / 2 * i;
    int je = min<int>(len, c.size() - offset);
    for (int j = 0; j < je; j++) {
      c[j + offset] += cs[i][j];
    }
  }
  return c;
}

fps convolution998244353_large2(const fps &a, const fps &b) {
  constexpr int len = 1 << 23;
  constexpr int mask = len - 1;
  constexpr mint pr = 3;
  int c_size = a.size() + b.size() - 1;

  if (a.empty() || b.empty()) return fps{};
  if (c_size <= len) return a * b;

  fps c, s(len), t(len);

  for (int si = 0; si < c_size; si += len) {
    fill(begin(s), end(s), mint{0});
    fill(begin(t), end(t), mint{0});
    mint base = pr.pow(si / len), coeff = 1;
    for (int i = 0, j = 0; i < (int)a.size(); ++i, j = (j + 1) & mask) {
      s[j] += a[i] * coeff;
      coeff *= base;
    }
    coeff = 1;
    for (int i = 0, j = 0; i < (int)b.size(); ++i, j = (j + 1) & mask) {
      t[j] += b[i] * coeff;
      coeff *= base;
    }
    s.ntt();
    t.ntt();
    for (int i = 0; i < len; i++) s[i] *= t[i];
    s.intt();
    copy(begin(s), end(s), back_inserter(c));
  }

  int N = c.size() / len;
  vector mat(N, vector(N, mint{}));
  for (int i = 0; i < N; i++) {
    for (int j = 0; j < N; j++) {
      mat[i][j] = pr.pow(1LL * len * i * j);
    }
  }
  auto imat = inverse_matrix(mat);


  for (int l = 0; l < len; l++) {
    vector<mint> v(N), w(N);
    for (int i = 0; i < N; i++) v[i] = c[i * len + l];
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < N; j++) {
        w[i] += imat[i][j] * v[j];
      }
    }
    for (int i = 0; i < N; i++) c[i * len + l] = w[i];
  }

  c.resize(c_size);
  return c;
}

void verify() {
  int mx = 1 << 25;
  int amax = 998244353;
  while (true) {
    int N = randint(1, mx);
    int M = randint(1, mx);
    fps a(N), b(M);
    each(x, a) x = randint(0, amax);
    each(x, b) x = randint(0, amax);
    Timer timer;

    timer.reset();
    auto f1 = convolution998244353_large(a, b);
    out("old :", timer.elapsed());
    cout.flush();

    timer.reset();
    auto f2 = convolution998244353_large2(a, b);
    out("new :", timer.elapsed());
    cout.flush();

    assert(sz(f1) == sz(f2));
    rep(i, sz(f1)) {
      if (f1[i] != f2[i]) {
        out(i, "th element differ.");
        cout.flush();
        exit(1);
      }
    }
  }
}

*/




template <uint32_t mod>
struct LazyMontgomeryModInt {
  using mint = LazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static constexpr u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static constexpr u32 r = get_r();
  static constexpr u32 n2 = -u64(mod) % mod;
  static_assert(r * mod == 1, "invalid, r * mod != 1");
  static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");
  static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");

  u32 a;

  constexpr LazyMontgomeryModInt() : a(0) {}
  constexpr LazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static constexpr u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  constexpr mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  constexpr mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  constexpr mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  constexpr mint operator+(const mint &b) const { return mint(*this) += b; }
  constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }
  constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }
  constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }
  constexpr bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  constexpr mint operator-() const { return mint() - mint(*this); }

  constexpr mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }
  
  constexpr mint inverse() const { return pow(mod - 2); }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = LazyMontgomeryModInt<mod>(t);
    return (is);
  }
  
  constexpr u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static constexpr u32 get_mod() { return mod; }
};

template <typename T>
struct Binomial {
  vector<T> f, g, h;
  Binomial(int MAX = 0) : f(1, T(1)), g(1, T(1)), h(1, T(1)) {
    while (MAX >= (int)f.size()) extend();
  }

  void extend() {
    int n = f.size();
    int m = n * 2;
    f.resize(m);
    g.resize(m);
    h.resize(m);
    for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);
    g[m - 1] = f[m - 1].inverse();
    h[m - 1] = g[m - 1] * f[m - 2];
    for (int i = m - 2; i >= n; i--) {
      g[i] = g[i + 1] * T(i + 1);
      h[i] = g[i] * f[i - 1];
    }
  }

  T fac(int i) {
    if (i < 0) return T(0);
    while (i >= (int)f.size()) extend();
    return f[i];
  }

  T finv(int i) {
    if (i < 0) return T(0);
    while (i >= (int)g.size()) extend();
    return g[i];
  }

  T inv(int i) {
    if (i < 0) return -inv(-i);
    while (i >= (int)h.size()) extend();
    return h[i];
  }

  T C(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r) * finv(r);
  }

  inline T operator()(int n, int r) { return C(n, r); }

  template <typename I>
  T multinomial(const vector<I>& r) {
    static_assert(is_integral<I>::value == true);
    int n = 0;
    for (auto& x : r) {
      if(x < 0) return T(0);
      n += x;
    }
    T res = fac(n);
    for (auto& x : r) res *= finv(x);
    return res;
  }

  template <typename I>
  T operator()(const vector<I>& r) {
    return multinomial(r);
  }

  T C_naive(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    T ret = T(1);
    r = min(r, n - r);
    for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);
    return ret;
  }

  T P(int n, int r) {
    if (n < 0 || n < r || r < 0) return T(0);
    return fac(n) * finv(n - r);
  }

  T H(int n, int r) {
    if (n < 0 || r < 0) return T(0);
    return r == 0 ? 1 : C(n + r - 1, r);
  }
};

//
using namespace Nyaan;
// using mint = LazyMontgomeryModInt<998244353>;
using mint = LazyMontgomeryModInt<1000000007>;
using vm = vector<mint>;
using vvm = vector<vm>;
Binomial<mint> C;





// Prime Sieve {2, 3, 5, 7, 11, 13, 17, ...}
vector<int> prime_enumerate(int N) {
  vector<bool> sieve(N / 3 + 1, 1);
  for (int p = 5, d = 4, i = 1, sqn = sqrt(N); p <= sqn; p += d = 6 - d, i++) {
    if (!sieve[i]) continue;
    for (int q = p * p / 3, r = d * p / 3 + (d * p % 3 == 2), s = 2 * p,
             qe = sieve.size();
         q < qe; q += r = s - r)
      sieve[q] = 0;
  }
  vector<int> ret{2, 3};
  for (int p = 5, d = 4, i = 1; p <= N; p += d = 6 - d, i++)
    if (sieve[i]) ret.push_back(p);
  while (!ret.empty() && ret.back() > N) ret.pop_back();
  return ret;
}

struct divisor_transform {
  template <typename T>
  static void zeta_transform(vector<T> &a) {
    int N = a.size() - 1;
    auto sieve = prime_enumerate(N);
    for (auto &p : sieve)
      for (int k = 1; k * p <= N; ++k) a[k * p] += a[k];
  }
  template <typename T>
  static void mobius_transform(T &a) {
    int N = a.size() - 1;
    auto sieve = prime_enumerate(N);
    for (auto &p : sieve)
      for (int k = N / p; k > 0; --k) a[k * p] -= a[k];
  }

  template <typename T>
  static void zeta_transform(map<long long, T> &a) {
    for (auto p = rbegin(a); p != rend(a); p++)
      for (auto &x : a) {
        if (p->first == x.first) break;
        if (p->first % x.first == 0) p->second += x.second;
      }
  }
  template <typename T>
  static void mobius_transform(map<long long, T> &a) {
    for (auto &x : a)
      for (auto p = rbegin(a); p != rend(a); p++) {
        if (x.first == p->first) break;
        if (p->first % x.first == 0) p->second -= x.second;
      }
  }
};

struct multiple_transform {
  template <typename T>
  static void zeta_transform(vector<T> &a) {
    int N = a.size() - 1;
    auto sieve = prime_enumerate(N);
    for (auto &p : sieve)
      for (int k = N / p; k > 0; --k) a[k] += a[k * p];
  }
  template <typename T>
  static void mobius_transform(vector<T> &a) {
    int N = a.size() - 1;
    auto sieve = prime_enumerate(N);
    for (auto &p : sieve)
      for (int k = 1; k * p <= N; ++k) a[k] -= a[k * p];
  }

  template <typename T>
  static void zeta_transform(map<long long, T> &a) {
    for (auto &x : a)
      for (auto p = rbegin(a); p->first != x.first; p++)
        if (p->first % x.first == 0) x.second += p->second;
  }
  template <typename T>
  static void mobius_transform(map<long long, T> &a) {
    for (auto p1 = rbegin(a); p1 != rend(a); p1++)
      for (auto p2 = rbegin(a); p2 != p1; p2++)
        if (p2->first % p1->first == 0) p1->second -= p2->second;
  }
};

/**
 * @brief 倍数変換・約数変換
 * @docs docs/multiplicative-function/divisor-multiple-transform.md
 */



namespace inner {

using i32 = int32_t;
using u32 = uint32_t;
using i64 = int64_t;
using u64 = uint64_t;

template <typename T>
T gcd(T a, T b) {
  while (b) swap(a %= b, b);
  return a;
}

template <typename T>
T inv(T a, T p) {
  T b = p, x = 1, y = 0;
  while (a) {
    T q = b / a;
    swap(a, b %= a);
    swap(x, y -= q * x);
  }
  assert(b == 1);
  return y < 0 ? y + p : y;
}

template <typename T, typename U>
T modpow(T a, U n, T p) {
  T ret = 1 % p;
  for (; n; n >>= 1, a = U(a) * a % p)
    if (n & 1) ret = U(ret) * a % p;
  return ret;
}

}  // namespace inner

namespace my_rand {

// [0, 2^64 - 1)
uint64_t rng() {
  static uint64_t x_ =
      uint64_t(chrono::duration_cast<chrono::nanoseconds>(
                   chrono::high_resolution_clock::now().time_since_epoch())
                   .count()) *
      10150724397891781847ULL;
  x_ ^= x_ << 7;
  return x_ ^= x_ >> 9;
}

// [l, r)
int64_t randint(int64_t l, int64_t r) {
  assert(l < r);
  return l + rng() % (r - l);
}

// choose n numbers from [l, r) without overlapping
vector<int64_t> randset(int64_t l, int64_t r, int64_t n) {
  assert(l <= r && n <= r - l);
  unordered_set<int64_t> s;
  for (int64_t i = n; i; --i) {
    int64_t m = randint(l, r + 1 - i);
    if (s.find(m) != s.end()) m = r - i;
    s.insert(m);
  }
  vector<int64_t> ret;
  for (auto& x : s) ret.push_back(x);
  return ret;
}

// [0.0, 1.0)
double rnd() {
  union raw_cast {
    double t;
    uint64_t u;
  };
  constexpr uint64_t p = uint64_t(1023 - 64) << 52;
  return rng() * ((raw_cast*)(&p))->t;
}

template <typename T>
void randshf(vector<T>& v) {
  int n = v.size();
  for (int loop = 0; loop < 2; loop++)
    for (int i = 0; i < n; i++) swap(v[i], v[randint(0, n)]);
}

}  // namespace my_rand

using my_rand::randint;
using my_rand::randset;
using my_rand::randshf;
using my_rand::rnd;
using my_rand::rng;



struct ArbitraryLazyMontgomeryModInt {
  using mint = ArbitraryLazyMontgomeryModInt;
  using i32 = int32_t;
  using u32 = uint32_t;
  using u64 = uint64_t;

  static u32 mod;
  static u32 r;
  static u32 n2;

  static u32 get_r() {
    u32 ret = mod;
    for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static void set_mod(u32 m) {
    assert(m < (1 << 30));
    assert((m & 1) == 1);
    mod = m;
    n2 = -u64(m) % m;
    r = get_r();
    assert(r * mod == 1);
  }

  u32 a;

  ArbitraryLazyMontgomeryModInt() : a(0) {}
  ArbitraryLazyMontgomeryModInt(const int64_t &b)
      : a(reduce(u64(b % mod + mod) * n2)){};

  static u32 reduce(const u64 &b) {
    return (b + u64(u32(b) * u32(-r)) * mod) >> 32;
  }

  mint &operator+=(const mint &b) {
    if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator-=(const mint &b) {
    if (i32(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator*=(const mint &b) {
    a = reduce(u64(a) * b.a);
    return *this;
  }

  mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  mint operator+(const mint &b) const { return mint(*this) += b; }
  mint operator-(const mint &b) const { return mint(*this) -= b; }
  mint operator*(const mint &b) const { return mint(*this) *= b; }
  mint operator/(const mint &b) const { return mint(*this) /= b; }
  bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  mint operator-() const { return mint() - mint(*this); }

  mint pow(u64 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = ArbitraryLazyMontgomeryModInt(t);
    return (is);
  }

  mint inverse() const { return pow(mod - 2); }

  u32 get() const {
    u32 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static u32 get_mod() { return mod; }
};
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::mod;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::r;
typename ArbitraryLazyMontgomeryModInt::u32 ArbitraryLazyMontgomeryModInt::n2;



struct montgomery64 {
  using mint = montgomery64;
  using i64 = int64_t;
  using u64 = uint64_t;
  using u128 = __uint128_t;

  static u64 mod;
  static u64 r;
  static u64 n2;

  static u64 get_r() {
    u64 ret = mod;
    for (i64 i = 0; i < 5; ++i) ret *= 2 - mod * ret;
    return ret;
  }

  static void set_mod(u64 m) {
    assert(m < (1LL << 62));
    assert((m & 1) == 1);
    mod = m;
    n2 = -u128(m) % m;
    r = get_r();
    assert(r * mod == 1);
  }

  u64 a;

  montgomery64() : a(0) {}
  montgomery64(const int64_t &b) : a(reduce((u128(b) + mod) * n2)){};

  static u64 reduce(const u128 &b) {
    return (b + u128(u64(b) * u64(-r)) * mod) >> 64;
  }

  mint &operator+=(const mint &b) {
    if (i64(a += b.a - 2 * mod) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator-=(const mint &b) {
    if (i64(a -= b.a) < 0) a += 2 * mod;
    return *this;
  }

  mint &operator*=(const mint &b) {
    a = reduce(u128(a) * b.a);
    return *this;
  }

  mint &operator/=(const mint &b) {
    *this *= b.inverse();
    return *this;
  }

  mint operator+(const mint &b) const { return mint(*this) += b; }
  mint operator-(const mint &b) const { return mint(*this) -= b; }
  mint operator*(const mint &b) const { return mint(*this) *= b; }
  mint operator/(const mint &b) const { return mint(*this) /= b; }
  bool operator==(const mint &b) const {
    return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);
  }
  bool operator!=(const mint &b) const {
    return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);
  }
  mint operator-() const { return mint() - mint(*this); }

  mint pow(u128 n) const {
    mint ret(1), mul(*this);
    while (n > 0) {
      if (n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const mint &b) {
    return os << b.get();
  }

  friend istream &operator>>(istream &is, mint &b) {
    int64_t t;
    is >> t;
    b = montgomery64(t);
    return (is);
  }

  mint inverse() const { return pow(mod - 2); }

  u64 get() const {
    u64 ret = reduce(a);
    return ret >= mod ? ret - mod : ret;
  }

  static u64 get_mod() { return mod; }
};
typename montgomery64::u64 montgomery64::mod, montgomery64::r, montgomery64::n2;

namespace fast_factorize {
using u64 = uint64_t;

template <typename mint>
bool miller_rabin(u64 n, vector<u64> as) {
  if (mint::get_mod() != n) mint::set_mod(n);
  u64 d = n - 1;
  while (~d & 1) d >>= 1;
  mint e{1}, rev{int64_t(n - 1)};
  for (u64 a : as) {
    if (n <= a) break;
    u64 t = d;
    mint y = mint(a).pow(t);
    while (t != n - 1 && y != e && y != rev) {
      y *= y;
      t *= 2;
    }
    if (y != rev && t % 2 == 0) return false;
  }
  return true;
}

bool is_prime(u64 n) {
  if (~n & 1) return n == 2;
  if (n <= 1) return false;
  if (n < (1LL << 30))
    return miller_rabin<ArbitraryLazyMontgomeryModInt>(n, {2, 7, 61});
  else
    return miller_rabin<montgomery64>(
        n, {2, 325, 9375, 28178, 450775, 9780504, 1795265022});
}

template <typename mint, typename T>
T pollard_rho(T n) {
  if (~n & 1) return 2;
  if (is_prime(n)) return n;
  if (mint::get_mod() != n) mint::set_mod(n);
  mint R, one = 1;
  auto f = [&](mint x) { return x * x + R; };
  auto rnd_ = [&]() { return rng() % (n - 2) + 2; };
  while (1) {
    mint x, y, ys, q = one;
    R = rnd_(), y = rnd_();
    T g = 1;
    constexpr int m = 128;
    for (int r = 1; g == 1; r <<= 1) {
      x = y;
      for (int i = 0; i < r; ++i) y = f(y);
      for (int k = 0; g == 1 && k < r; k += m) {
        ys = y;
        for (int i = 0; i < m && i < r - k; ++i) q *= x - (y = f(y));
        g = inner::gcd<T>(q.get(), n);
      }
    }
    if (g == n) do
        g = inner::gcd<T>((x - (ys = f(ys))).get(), n);
      while (g == 1);
    if (g != n) return g;
  }
  exit(1);
}

using i64 = long long;

vector<i64> inner_factorize(u64 n) {
  if (n <= 1) return {};
  u64 p;
  if (n <= (1LL << 30))
    p = pollard_rho<ArbitraryLazyMontgomeryModInt, uint32_t>(n);
  else
    p = pollard_rho<montgomery64, uint64_t>(n);
  if (p == n) return {i64(p)};
  auto l = inner_factorize(p);
  auto r = inner_factorize(n / p);
  copy(begin(r), end(r), back_inserter(l));
  return l;
}

vector<i64> factorize(u64 n) {
  auto ret = inner_factorize(n);
  sort(begin(ret), end(ret));
  return ret;
}

map<i64, i64> factor_count(u64 n) {
  map<i64, i64> mp;
  for (auto &x : factorize(n)) mp[x]++;
  return mp;
}

vector<i64> divisors(u64 n) {
  if (n == 0) return {};
  vector<pair<i64, i64>> v;
  for (auto &p : factorize(n)) {
    if (v.empty() || v.back().first != p) {
      v.emplace_back(p, 1);
    } else {
      v.back().second++;
    }
  }
  vector<i64> ret;
  auto f = [&](auto rc, int i, i64 x) -> void {
    if (i == (int)v.size()) {
      ret.push_back(x);
      return;
    }
    for (int j = v[i].second;; --j) {
      rc(rc, i + 1, x);
      if (j == 0) break;
      x *= v[i].first;
    }
  };
  f(f, 0, 1);
  sort(begin(ret), end(ret));
  return ret;
}

}  // namespace fast_factorize

using fast_factorize::divisors;
using fast_factorize::factor_count;
using fast_factorize::factorize;
using fast_factorize::is_prime;

/**
 * @brief 高速素因数分解(Miller Rabin/Pollard's Rho)
 * @docs docs/prime/fast-factorize.md
 */


void q() {
  inl(n, c);
  auto ds = divisors(n);
  map<ll, int> phi;
  each(d, ds) phi[d] = d;
  divisor_transform::mobius_transform(phi);
  trc(phi);
  mint ans = 0;

  // 回転のみ
  // sum_{1<=i<=n} C^(gcd(n,i)*2)
  // = sum_{d in n} C^phi(m/d)*2 // d 個置きに一致するのが phi(m/d)個
  each(d,ds) ans += mint{c}.pow(d * 2) * phi[n/d];

  trc(ans);

  // 反転 回転
  ans += mint{c}.pow(n) * n;
  /*
  each(d,ds) {
    // 反転して d 個おき どうなりますか?
    ans += mint{c}.pow(n);
  }
  */
  trc(ans);

  ans/=2*n;

  out(ans);
}

void Nyaan::solve() {
  ini(T);
  rep(i, T) q();
}
0