結果
| 問題 |
No.1728 [Cherry 3rd Tune] Bullet
|
| コンテスト | |
| ユーザー |
t33f
|
| 提出日時 | 2021-10-29 22:12:37 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 3 ms / 2,000 ms |
| コード長 | 3,624 bytes |
| コンパイル時間 | 1,159 ms |
| コンパイル使用メモリ | 88,300 KB |
| 最終ジャッジ日時 | 2025-01-25 08:58:17 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 27 |
ソースコード
#include <cmath>
#include <vector>
#include <iostream>
using namespace std;
template<int mod>
class modint {
int val = 0;
static int normalize(long long x) {
if (0 <= x and x < mod) return x;
else { x %= mod; return x >= 0 ? x : x + mod; }
}
public:
modint() {}
modint(long long n) : val(normalize(n)) {}
int value() const { return val; }
const modint operator+(const modint r) const {
int t = val + r.val;
if (t >= mod) t -= mod;
return modint(t);
}
const modint operator-(const modint r) const {
int t = val - r.val;
if (t < 0) t += mod;
return modint(t);
}
const modint operator*(const modint r) const {
return (long long)val * r.val % mod;
}
const modint operator/(const modint r) const {
return (long long)val * r.inverse().value() % mod;
}
const modint operator-() const { return modint(mod - val); }
const modint inverse() const {
long long x = mod, y = val, p = 1, q = 0, r = 0, s = 1;
while (y != 0) {
long long u = x / y;
long long x0 = y; y = x - y * u; x = x0;
long long r0 = p - r * u, s0 = q - s * u;
p = r; r = r0; q = s; s = s0;
}
return modint(q);
}
const modint pow(long long e) const {
long long ans = 1, p = val;
while (e > 0) {
if (e % 2 != 0) ans = (ans * p) % mod;
p = (p * p) % mod;
e >>= 1;
}
return modint(ans);
}
bool operator==(const modint r) const { return val == r.val; }
bool operator!=(const modint r) const { return val != r.val; }
modint &operator+=(const modint r) {
val += r.value();
if (val >= mod) val -= mod;
return *this;
}
modint &operator-=(const modint r) {
val -= r.value();
if (val < 0) val += mod;
return *this;
}
modint &operator*=(const modint r) {
val = (long long)val * r.value() % mod;
return *this;
}
modint &operator/=(const modint r) {
val = (long long)val * r.inverse().value() % mod;
return *this;
}
friend modint operator+(long long l, modint r) {
return modint(l) + r;
}
friend modint operator-(long long l, modint r) {
return modint(l) - r;
}
friend modint operator*(long long l, modint r) {
return modint(l) * r;
}
friend modint operator/(long long l, modint r) {
return modint(l) / r;
}
};
constexpr int M = 1000000007;
using mint = modint<M>;
vector<pair<int, int> > factorize(int n) {
vector<pair<int, int> > ret;
for (int p = 2; p * p <= n; p++) {
if (n % p == 0) {
int e = 0;
while (n % p == 0) { e++; n /= p; }
ret.emplace_back(p, e);
}
}
if (n > 1) ret.emplace_back(n, 1);
return ret;
}
mint calc(const vector<pair<int, int> > &pf, mint c, int n, int i, int d, int phi) {
if (i == pf.size()) {
return phi * c.pow(n / d);
} else {
mint ret(0);
auto [p, e] = pf[i];
for (int j = 0, q = 1; j <= e; j++, q *= p) {
int mul = j == 0 ? 1 : q / p * (p - 1);
ret += calc(pf, c, n, i+1, d * q, phi * mul);
}
return ret;
}
}
int main() {
int t; cin >> t;
while (t--) {
int n, c; cin >> n >> c;
vector<pair<int, int> > pf = factorize(n);
mint ans = n * mint(c).pow(n);
ans += calc(pf, mint(c), 2 * n, 0, 1, 1);
ans /= 2 * n;
cout << ans.value() << '\n';
}
}
t33f