結果

問題 No.1728 [Cherry 3rd Tune] Bullet
ユーザー LayCurse
提出日時 2021-10-29 22:47:01
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 75 ms / 2,000 ms
コード長 20,489 bytes
コンパイル時間 4,184 ms
コンパイル使用メモリ 243,864 KB
最終ジャッジ日時 2025-01-25 09:17:54
ジャッジサーバーID
(参考情報)
judge2 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
template<class T> struct cLtraits_identity{
using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
typename conditional<
is_integral<T>::value,
make_signed<T>,
cLtraits_identity<T>
>::type;
template <class S, class T> struct cLtraits_common_type{
using tS = typename cLtraits_try_make_signed<S>::type;
using tT = typename cLtraits_try_make_signed<T>::type;
using type = typename common_type<tS,tT>::type;
}
;
void*wmem;
char memarr[96000000];
template<class S, class T> inline auto min_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
return (typename cLtraits_common_type<S,T>::type) a <= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class S, class T> inline auto max_L(S a, T b)
-> typename cLtraits_common_type<S,T>::type{
return (typename cLtraits_common_type<S,T>::type) a >= (typename cLtraits_common_type<S,T>::type) b ? a : b;
}
template<class T> inline void walloc1d(T **arr, int x, void **mem = &wmem){
static int skip[16] = {0, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
(*mem) = (void*)( ((char*)(*mem)) + skip[((unsigned long long)(*mem)) & 15] );
(*arr)=(T*)(*mem);
(*mem)=((*arr)+x);
}
template<class T> inline void walloc1d(T **arr, int x1, int x2, void **mem = &wmem){
walloc1d(arr, x2-x1, mem);
(*arr) -= x1;
}
#define ISPRIME_PRE_CALC_SIZE 1000000
char isPrime_prime_table[ISPRIME_PRE_CALC_SIZE];
template<class T> inline int isPrime(T n);
void isPrime32_init(void);
int isPrime32_sub(int b, unsigned n);
int isPrime32(unsigned n);
int isPrime64_sub(long long b, unsigned long long n);
int isPrime64(unsigned long long n);
#define FACTOR_PRE_CALC_SIZE 1000000
int factor_hasprime_table[FACTOR_PRE_CALC_SIZE];
template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem = wmem);
template<class T, class R1> int Factor(T N, R1 fac[], void *mem = wmem);
template<class T> int Factor(T N, void *mem = wmem);
unsigned Factor32_rho(unsigned n);
template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem = wmem);
unsigned long long Factor64_rho(unsigned long long n);
template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem = wmem);
void Factor32_init(void);
template<class T, class R> int Divisor(T N, R res[], void *mem = wmem);
template<class T1> void sortA_L(int N, T1 a[], void *mem = wmem){
sort(a, a+N);
}
struct Rand{
unsigned x;
unsigned y;
unsigned z;
unsigned w;
Rand(void){
x=123456789;
y=362436069;
z=521288629;
w=(unsigned)time(NULL);
}
Rand(unsigned seed){
x=123456789;
y=362436069;
z=521288629;
w=seed;
}
inline unsigned get(void){
unsigned t;
t = (x^(x<<11));
x=y;
y=z;
z=w;
w = (w^(w>>19))^(t^(t>>8));
return w;
}
inline double getUni(void){
return get()/4294967296.0;
}
inline int get(int a){
return (int)(a*getUni());
}
inline int get(int a, int b){
return a+(int)((b-a+1)*getUni());
}
inline long long get(long long a){
return(long long)(a*getUni());
}
inline long long get(long long a, long long b){
return a+(long long)((b-a+1)*getUni());
}
inline double get(double a, double b){
return a+(b-a)*getUni();
}
inline int getExp(int a){
return(int)(exp(getUni()*log(a+1.0))-1.0);
}
inline int getExp(int a, int b){
return a+(int)(exp(getUni()*log((b-a+1)+1.0))-1.0);
}
}
;
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator++(){
val++;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator--(){
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return *this;
}
inline Modint operator++(int a){
Modint res(*this);
val++;
if(val >= MD){
val -= MD;
}
return res;
}
inline Modint operator--(int a){
Modint res(*this);
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return res;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void rd(Modint &x){
int i;
rd(i);
x=i;
}
inline int rd_int(void){
int x;
rd(x);
return x;
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
template<class T> inline T pow2_L(T a){
return a*a;
}
template<class T, class S> inline T pow_L(T a, S b){
T res = 1;
res = 1;
for(;;){
if(b&1){
res *= a;
}
b >>= 1;
if(b==0){
break;
}
a *= a;
}
return res;
}
inline double pow_L(double a, double b){
return pow(a,b);
}
template<class T, class U> inline T GCD_L(T a, U b){
T r;
while(b){
r=a;
a=b;
b=r%a;
}
return a;
}
inline long long Isqrt_f_L(const long long n){
long long r = sqrt(n);
r =max_L(r-2, 0);
while((pow2_L((r+1)))<= n ){
r++;
}
return r;
}
int main(){
int Lj4PdHRW;
wmem = memarr;
{
isPrime32_init();
}
{
Factor32_init();
}
int ys;
int y[100000];
Modint dp[100000];
int KL2GvlyY = rd_int();
for(Lj4PdHRW=(0);Lj4PdHRW<(KL2GvlyY);Lj4PdHRW++){
int i;
int N;
rd(N);
Modint C;
rd(C);
Modint res = 0;
ys = Divisor(N,y);
for(i=(0);i<(ys);i++){
dp[i] = 0;
}
for(i=(ys)-1;i>=(0);i--){
int j;
dp[i] = N / y[i];
for(j=(i+1);j<(ys);j++){
if(y[j]%y[i]==0){
dp[i] -= dp[j];
}
}
}
res += ((pow_L(C,N))) * N;
for(i=(0);i<(ys);i++){
res +=(pow_L(C,(2 * y[i]))) * dp[i];
}
res /= 2 * N;
wt_L(res);
wt_L('\n');
}
return 0;
}
template<class T> inline int isPrime(T n){
T i;
if(n<=1){
return 0;
}
if(n <= (1ULL<<32) - 1){
return isPrime32(n);
}
if(n <= (1ULL<<63) - 1 + (1ULL<<63)){
return isPrime64(n);
}
if(n<=3){
return 1;
}
if(n%2==0){
return 0;
}
for(i=3;i*i<=n;i+=2){
if(n%i==0){
return 0;
}
}
return 1;
}
int isPrime32_sub(int b, unsigned n){
unsigned i;
unsigned t = 0;
unsigned u = n-1;
unsigned long long nw;
unsigned long long nx;
while(!(u&1)){
t++;
u >>= 1;
}
nw = 1;
nx = b % n;
while(u){
if(u&1){
nw = (nw * nx) % n;
}
nx = (nx * nx) % n;
u >>= 1;
}
for(i=(0);i<(t);i++){
nx = (nw * nw) % n;
if(nx == 1 && nw != 1 && nw != n-1){
return 0;
}
nw = nx;
}
if(nw == 1){
return 1;
}
return 0;
}
int isPrime32(unsigned n){
if(n < 100000){
return isPrime_prime_table[n];
}
if(n % 2 == 0){
return 0;
}
if(!isPrime32_sub(2,n)){
return 0;
}
if(n<=1000000){
if(!isPrime32_sub(3,n)){
return 0;
}
}
else{
if(!isPrime32_sub(7,n)){
return 0;
}
if(!isPrime32_sub(61,n)){
return 0;
}
}
return 1;
}
int isPrime64_sub(long long b, unsigned long long n){
unsigned long long i;
unsigned long long t = 0;
unsigned long long u = n-1;
__uint128_t nw;
__uint128_t nx;
while(!(u&1)){
t++;
u >>= 1;
}
nw = 1;
nx = b % n;
while(u){
if(u&1){
nw = (nw * nx) % n;
}
nx = (nx * nx) % n;
u >>= 1;
}
for(i=(0);i<(t);i++){
nx = (nw * nw) % n;
if(nx == 1 && nw != 1 && nw != n-1){
return 0;
}
nw = nx;
}
if(nw == 1){
return 1;
}
return 0;
}
int isPrime64(unsigned long long n){
if(n < 100000){
return isPrime_prime_table[n];
}
if(n < (1ULL<<32)){
return isPrime32(n);
}
if(n % 2 == 0){
return 0;
}
if(!isPrime64_sub(2,n)){
return 0;
}
if(n <= 21652684502221ULL){
if(!isPrime64_sub(1215,n)){
return 0;
}
if(!isPrime64_sub(34862,n)){
return 0;
}
if(!isPrime64_sub(574237825,n)){
return 0;
}
}
else{
if(!isPrime64_sub(325,n)){
return 0;
}
if(!isPrime64_sub(9375,n)){
return 0;
}
if(!isPrime64_sub(28178,n)){
return 0;
}
if(!isPrime64_sub(450775,n)){
return 0;
}
if(!isPrime64_sub(9780504,n)){
return 0;
}
if(!isPrime64_sub(1795265022,n)){
return 0;
}
}
return 1;
}
void isPrime32_init(void){
int i;
int j;
int k;
k =Isqrt_f_L(ISPRIME_PRE_CALC_SIZE);
for(i=(2);i<(ISPRIME_PRE_CALC_SIZE);i++){
isPrime_prime_table[i] = 1;
}
for(i=(2);i<(k+1);i++){
if(isPrime_prime_table[i]){
for(j=(i*i);j<(ISPRIME_PRE_CALC_SIZE);j+=(i)){
isPrime_prime_table[j] = 0;
}
}
}
}
template<class T, class R1, class R2> int Factor(T N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
T i;
int sz = 0;
if(N <= 1){
return sz;
}
if(N <= (1ULL<<32) - 1){
return Factor32(N, fac, fs, mem);
}
if(N <= (1ULL<<63) - 1 + (1ULL<<63)){
return Factor64(N, fac, fs, mem);
}
if(N%2==0){
fac[sz] = 2;
fs[sz] = 1;
N /= 2;
while(N%2==0){
N /= 2;
fs[sz]++;
}
sz++;
}
for(i=3;i*i<=N;i+=2){
if(N%i==0){
fac[sz] = i;
fs[sz] = 1;
N /= i;
while(N%i==0){
N /= i;
fs[sz]++;
}
sz++;
}
}
if(N > 1){
fac[sz] = N;
fs[sz] = 1;
sz++;
}
return sz;
}
template<class T, class R1> int Factor(T N, R1 fac[], void *mem/* = wmem*/){
int*fs;
walloc1d(&fs,128,&mem);
return Factor(N, fac, fs, mem);
}
template<class T> int Factor(T N, void *mem/* = wmem*/){
T*fac;
int*fs;
walloc1d(&fac,128,&mem);
walloc1d(&fs,128,&mem);
return Factor(N, fac, fs, mem);
}
unsigned Factor32_rho(unsigned n){
static Rand rnd;
const int step = 16;
int i;
int s;
int nx;
int mx;
unsigned long long x;
unsigned long long y;
unsigned long long memo;
unsigned long long c;
unsigned long long m;
unsigned g;
long long lm;
lm =min_L(1ULL<<30, n - 1);
for(;;){
x = y = rnd.get(1LL, lm);
c = rnd.get(1LL, lm);
g = 1;
for(nx=1;g==1;nx<<=1){
x = y;
for(i=(0);i<(nx);i++){
y = (y * y + c) % n;
}
for(s=0;s<nx&&g==1;s+=step){
m = 1;
memo = y;
mx =min_L(step, nx-s);
for(i=(0);i<(mx);i++){
y = (y * y + c) % n;
if(x >= y){
m = (m * (x - y)) % n;
}
else{
m = (m * (y - x)) % n;
}
}
g =GCD_L(n, m);
if(g != 1){
if(g != n){
return g;
}
y = memo;
for(;;){
y = (y * y + c) % n;
if(x >= y){
m = x - y;
}
else{
m = y - x;
}
g =GCD_L(n, m);
if(g == n){
break;
}
if(g != 1){
return g;
}
}
}
}
}
}
return 0;
}
template<class R1, class R2> int Factor32(unsigned N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
int res = 0;
int sz = 0;
int i;
int k;
unsigned*val;
unsigned*valtmp;
unsigned pf;
unsigned n;
if(N <= 1){
return 0;
}
walloc1d(&val, 128, &mem);
walloc1d(&valtmp, 128, &mem);
while(N%2==0){
val[res++] = 2;
N /= 2;
}
while(N%3==0){
val[res++] = 3;
N /= 3;
}
while(N%5==0){
val[res++] = 5;
N /= 5;
}
if(N > 1){
valtmp[sz++] = N;
}
while(sz){
while(sz && isPrime32(valtmp[sz-1])){
val[res] = valtmp[sz-1];
res++;
sz--;
}
if(sz==0){
break;
}
n = valtmp[sz-1];
if(n < FACTOR_PRE_CALC_SIZE){
while(n > 1){
val[res++] = factor_hasprime_table[n];
n /= factor_hasprime_table[n];
}
sz--;
}
else{
pf = Factor32_rho(n);
valtmp[sz-1] = pf;
valtmp[sz] = n / pf;
sz++;
}
}
sortA_L(res, val, mem);
k = 0;
for(i=(0);i<(res);i++){
if(k && fac[k-1] == val[i]){
fs[k-1]++;
continue;
}
fac[k] = val[i];
fs[k] = 1;
k++;
}
res = k;
return res;
}
unsigned long long Factor64_rho(unsigned long long n){
static Rand rnd;
const int step = 16;
int i;
int s;
int nx;
int mx;
__uint128_t x;
__uint128_t y;
__uint128_t memo;
__uint128_t c;
__uint128_t m;
unsigned long long g;
long long lm;
lm =min_L(1ULL<<30, n - 1);
for(;;){
x = y = rnd.get(1LL, lm);
c = rnd.get(1LL, lm);
g = 1;
for(nx=1;g==1;nx<<=1){
x = y;
for(i=(0);i<(nx);i++){
y = (y * y + c) % n;
}
for(s=0;s<nx&&g==1;s+=step){
m = 1;
memo = y;
mx =min_L(step, nx-s);
for(i=(0);i<(mx);i++){
y = (y * y + c) % n;
if(x >= y){
m = (m * (x - y)) % n;
}
else{
m = (m * (y - x)) % n;
}
}
g =GCD_L(n, m);
if(g != 1){
if(g != n){
return g;
}
y = memo;
for(;;){
y = (y * y + c) % n;
if(x >= y){
m = x - y;
}
else{
m = y - x;
}
g =GCD_L(n, m);
if(g == n){
break;
}
if(g != 1){
return g;
}
}
}
}
}
}
return 0;
}
template<class R1, class R2> int Factor64(unsigned long long N, R1 fac[], R2 fs[], void *mem/* = wmem*/){
int res = 0;
int sz = 0;
int i;
int k;
unsigned long long*val;
unsigned long long*valtmp;
unsigned long long pf;
unsigned long long n;
if(N <= 1){
return 0;
}
walloc1d(&val, 128, &mem);
walloc1d(&valtmp, 128, &mem);
while(N%2==0){
val[res++] = 2;
N /= 2;
}
while(N%3==0){
val[res++] = 3;
N /= 3;
}
while(N%5==0){
val[res++] = 5;
N /= 5;
}
if(N > 1){
valtmp[sz++] = N;
}
while(sz){
while(sz && isPrime64(valtmp[sz-1])){
val[res] = valtmp[sz-1];
res++;
sz--;
}
if(sz==0){
break;
}
n = valtmp[sz-1];
if(n < FACTOR_PRE_CALC_SIZE){
while(n > 1){
val[res++] = factor_hasprime_table[n];
n /= factor_hasprime_table[n];
}
sz--;
}
else if(n < (1ULL<<32)){
pf = Factor32_rho(n);
valtmp[sz-1] = pf;
valtmp[sz] = n / pf;
sz++;
}
else{
pf = Factor64_rho(n);
valtmp[sz-1] = pf;
valtmp[sz] = n / pf;
sz++;
}
}
sortA_L(res, val, mem);
k = 0;
for(i=(0);i<(res);i++){
if(k && fac[k-1] == val[i]){
fs[k-1]++;
continue;
}
fac[k] = val[i];
fs[k] = 1;
k++;
}
res = k;
return res;
}
void Factor32_init(void){
int i;
int j;
int k;
k =Isqrt_f_L(FACTOR_PRE_CALC_SIZE);
for(i=(2);i<(FACTOR_PRE_CALC_SIZE);i++){
factor_hasprime_table[i] = i;
}
for(i=(2);i<(k+1);i++){
if(factor_hasprime_table[i]==i){
for(j=(i*i);j<(FACTOR_PRE_CALC_SIZE);j+=(i)){
factor_hasprime_table[j] = i;
}
}
}
}
template<class T, class R> int Divisor(T N, R res[], void *mem/* = wmem*/){
int i;
int j;
int k;
int s;
int sz = 0;
T*fc;
int*fs;
int fsz;
walloc1d(&fc, 128, &mem);
walloc1d(&fs, 128, &mem);
fsz = Factor(N, fc, fs, mem);
res[sz++] = 1;
for(i=(0);i<(fsz);i++){
s = sz;
k = s * fs[i];
for(j=(0);j<(k);j++){
res[sz++] = res[j] * fc[i];
}
}
sort(res, res+sz);
return sz;
}
// cLay version 20211024-1
// --- original code ---
// int ys, y[1d5];
// Modint dp[1d5];
// REP(rd_int()){
// int @N;
// Modint @C, res = 0;
// ys = Divisor(N,y);
//
// rep(i,ys) dp[i] = 0;
// rrep(i,ys){
// dp[i] = N / y[i];
// rep(j,i+1,ys) if(y[j]%y[i]==0) dp[i] -= dp[j];
// }
//
// res += (C ** N) * N;
// rep(i,ys) res += C ** (2 * y[i]) * dp[i];
//
// res /= 2 * N;
// wt(res);
// }
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0