結果
問題 | No.1914 Directed by Two Sequences |
ユーザー |
|
提出日時 | 2021-10-31 18:48:52 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,204 bytes |
コンパイル時間 | 389 ms |
コンパイル使用メモリ | 82,040 KB |
実行使用メモリ | 219,824 KB |
最終ジャッジ日時 | 2024-12-16 01:17:11 |
合計ジャッジ時間 | 48,544 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 WA * 1 |
other | WA * 38 |
ソースコード
class SegmentTree: def __init__(self, init_val, segfunc, ide_ele): n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num self.size = n for i in range(n): self.tree[self.num + i] = init_val[i] for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def update(self, k, x): k += self.num self.tree[k] = x while k > 1: k >>= 1 self.tree[k] = self.segfunc(self.tree[2*k], self.tree[2*k+1]) def query(self, l, r): if r==self.size: r = self.num res = self.ide_ele l += self.num r += self.num right = [] while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: right.append(self.tree[r-1]) l >>= 1 r >>= 1 for e in right[::-1]: res = self.segfunc(res,e) return res def solve(N,A,B,M,E): A = [a-1 for a in A] B = [b-1 for b in B] res = set() edge = [[] for v in range(N)] for u,v in E: edge[u-1].append(v-1) edge[v-1].append(u-1) group = [-1 for v in range(N)] for v in range(N): mex = [False for i in range(len(edge[v])+1)] for nv in edge[v]: if nv < v and group[nv] < len(mex): mex[group[nv]] = True for i in range(len(mex)): if not mex[i]: group[v] = i break n = max(group) + 1 clique = [[] for g in range(n)] for v in range(N): clique[group[v]].append(v) def direct(i,j): if i < j: return A[i] < B[j] else: return B[i] < A[j] def hamilton_path(V): n = len(V) if n <= 1: return V A = hamilton_path(V[:n//2]) B = hamilton_path(V[n//2:]) res = [] bi = 0 for ai in range(len(A)): while bi<len(B) and direct(B[bi],A[ai]): res.append(B[bi]) bi += 1 res.append(A[ai]) res += B[bi:] return res idx = [-1 for v in range(N)] for g in range(n): clique[g] = hamilton_path(clique[g]) for i in range(len(clique[g])): idx[clique[g][i]] = i for u,v in zip(clique[g],clique[g][1:]): res.add((u,v)) if 5*10**4 <= N: import random E = set(E) while len(res) < 7 * 10**5: u = random.randint(1,N-1) v = random.randint(u+1,N) if (u,v) in E: continue if direct(u-1,v-1): res.add((u-1,v-1)) else: res.add((v-1,u-1)) print(len(res)) for u,v in res: print(u+1,v+1) import sys input = lambda :sys.stdin.buffer.readline() mi = lambda :map(int,input().split()) li = lambda :list(mi()) N,M = mi() A = li() B = li() E = [tuple(mi()) for i in range(M)] solve(N,A,B,M,E)