結果

問題 No.907 Continuous Kadomatu
ユーザー akakimidoriakakimidori
提出日時 2021-11-03 10:32:32
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 199 ms / 2,000 ms
コード長 20,690 bytes
コンパイル時間 21,829 ms
コンパイル使用メモリ 379,140 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-10-12 23:09:01
合計ジャッジ時間 23,856 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,820 KB
testcase_02 AC 1 ms
6,820 KB
testcase_03 AC 1 ms
6,820 KB
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 5 ms
6,816 KB
testcase_06 AC 1 ms
6,816 KB
testcase_07 AC 3 ms
6,820 KB
testcase_08 AC 4 ms
6,816 KB
testcase_09 AC 3 ms
6,816 KB
testcase_10 AC 7 ms
6,816 KB
testcase_11 AC 9 ms
6,816 KB
testcase_12 AC 15 ms
6,816 KB
testcase_13 AC 16 ms
6,820 KB
testcase_14 AC 17 ms
6,816 KB
testcase_15 AC 16 ms
6,820 KB
testcase_16 AC 19 ms
6,816 KB
testcase_17 AC 19 ms
6,816 KB
testcase_18 AC 17 ms
6,816 KB
testcase_19 AC 19 ms
6,816 KB
testcase_20 AC 2 ms
6,820 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 1 ms
6,820 KB
testcase_23 AC 197 ms
6,820 KB
testcase_24 AC 199 ms
6,820 KB
testcase_25 AC 1 ms
6,820 KB
testcase_26 AC 1 ms
6,816 KB
testcase_27 AC 1 ms
6,820 KB
testcase_28 AC 1 ms
6,816 KB
testcase_29 AC 1 ms
6,820 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// ---------- begin ModInt ----------
// モンゴメリ乗算を用いる
// ほぼCodeforces用
// 注意
// new_unchecked は値xが 0 <= x < modulo であることを仮定
// ModInt の中身は正規化された値で持ってるので直接読んだり書いたりするとぶっ壊れる
// 奇素数のみ
mod modint {

    use std::marker::*;
    use std::ops::*;

    pub trait Modulo {
        fn modulo() -> u32;
        fn rem() -> u32;
        fn ini() -> u64;
        fn reduce(x: u64) -> u32 {
            assert!(x < (Self::modulo() as u64) << 32);
            let b = (x as u32 * Self::rem()) as u64;
            let t = x + b * Self::modulo() as u64;
            let mut c = (t >> 32) as u32;
            if c >= Self::modulo() {
                c -= Self::modulo();
            }
            c as u32
        }
    }

    #[allow(dead_code)]
    pub enum Mod1_000_000_007 {}

    impl Modulo for Mod1_000_000_007 {
        fn modulo() -> u32 {
            1_000_000_007
        }
        fn rem() -> u32 {
            2226617417
        }
        fn ini() -> u64 {
            582344008
        }
    }

    #[allow(dead_code)]
    pub enum Mod998_244_353 {}

    impl Modulo for Mod998_244_353 {
        fn modulo() -> u32 {
            998_244_353
        }
        fn rem() -> u32 {
            998244351
        }
        fn ini() -> u64 {
            932051910
        }
    }

    #[allow(dead_code)]
    pub fn generate_umekomi_modulo(p: u32) {
        assert!(
            p < (1 << 31)
                && p > 2
                && p & 1 == 1
                && (2u32..).take_while(|v| v * v <= p).all(|k| p % k != 0)
        );
        let mut t = 1u32;
        let mut s = !p + 1;
        let mut n = !0u32 >> 2;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        let mut ini = (1u64 << 32) % p as u64;
        ini = (ini << 32) % p as u64;
        assert!(t * p == !0);
        println!("pub enum Mod{} {{}}", p);
        println!("impl Modulo for Mod{} {{", p);
        println!("    fn modulo() -> u32 {{");
        println!("        {}", p);
        println!("    }}");
        println!("    fn rem() -> u32 {{");
        println!("        {}", t);
        println!("    }}");
        println!("    fn ini() -> u64 {{");
        println!("        {}", ini);
        println!("    }}");
        println!("}}");
        let mut f = vec![];
        let mut n = p - 1;
        for i in 2.. {
            if i * i > n {
                break;
            }
            if n % i == 0 {
                f.push(i);
                while n % i == 0 {
                    n /= i;
                }
            }
        }
        if n > 1 {
            f.push(n);
        }
        let mut order = 1;
        let mut n = p - 1;
        while n % 2 == 0 {
            n /= 2;
            order <<= 1;
        }
        let z = (2u64..)
            .find(|z| {
                f.iter()
                    .all(|f| mod_pow(*z, ((p - 1) / *f) as u64, p as u64) != 1)
            })
            .unwrap();
        let zeta = mod_pow(z, ((p - 1) / order) as u64, p as u64);
        println!("impl transform::NTTFriendly for Mod{} {{", p);
        println!("    fn order() -> usize {{");
        println!("        {}", order);
        println!("    }}");
        println!("    fn zeta() -> u32 {{");
        println!("        {}", zeta);
        println!("    }}");
        println!("}}");
    }

    pub struct ModInt<T>(u32, PhantomData<T>);

    impl<T> Clone for ModInt<T> {
        fn clone(&self) -> Self {
            ModInt::build(self.0)
        }
    }

    impl<T> Copy for ModInt<T> {}

    impl<T: Modulo> Add for ModInt<T> {
        type Output = ModInt<T>;
        fn add(self, rhs: Self) -> Self::Output {
            let mut d = self.0 + rhs.0;
            if d >= T::modulo() {
                d -= T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> AddAssign for ModInt<T> {
        fn add_assign(&mut self, rhs: Self) {
            *self = *self + rhs;
        }
    }

    impl<T: Modulo> Sub for ModInt<T> {
        type Output = ModInt<T>;
        fn sub(self, rhs: Self) -> Self::Output {
            let mut d = self.0 - rhs.0;
            if d >= T::modulo() {
                d += T::modulo();
            }
            Self::build(d)
        }
    }

    impl<T: Modulo> SubAssign for ModInt<T> {
        fn sub_assign(&mut self, rhs: Self) {
            *self = *self - rhs;
        }
    }

    impl<T: Modulo> Mul for ModInt<T> {
        type Output = ModInt<T>;
        fn mul(self, rhs: Self) -> Self::Output {
            Self::build(T::reduce(self.0 as u64 * rhs.0 as u64))
        }
    }

    impl<T: Modulo> MulAssign for ModInt<T> {
        fn mul_assign(&mut self, rhs: Self) {
            *self = *self * rhs;
        }
    }

    impl<T: Modulo> Neg for ModInt<T> {
        type Output = ModInt<T>;
        fn neg(self) -> Self::Output {
            if self.0 == 0 {
                Self::zero()
            } else {
                Self::build(T::modulo() - self.0)
            }
        }
    }

    impl<T: Modulo> std::fmt::Display for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::fmt::Debug for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.get())
        }
    }

    impl<T: Modulo> std::str::FromStr for ModInt<T> {
        type Err = std::num::ParseIntError;
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let val = s.parse::<u32>()?;
            Ok(ModInt::new(val))
        }
    }

    impl<T: Modulo> From<usize> for ModInt<T> {
        fn from(val: usize) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as usize) as u32)
        }
    }

    impl<T: Modulo> From<u64> for ModInt<T> {
        fn from(val: u64) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as u64) as u32)
        }
    }

    impl<T: Modulo> From<i64> for ModInt<T> {
        fn from(val: i64) -> ModInt<T> {
            let m = T::modulo() as i64;
            ModInt::new((val % m + m) as u32)
        }
    }

    #[allow(dead_code)]
    impl<T> ModInt<T> {
        fn build(d: u32) -> Self {
            ModInt(d, PhantomData)
        }
        pub fn zero() -> Self {
            Self::build(0)
        }
        pub fn is_zero(&self) -> bool {
            self.0 == 0
        }
    }

    #[allow(dead_code)]
    impl<T: Modulo> ModInt<T> {
        pub fn new_unchecked(d: u32) -> Self {
            Self::build(T::reduce(d as u64 * T::ini()))
        }
        pub fn new(d: u32) -> Self {
            Self::new_unchecked(d % T::modulo())
        }
        pub fn one() -> Self {
            Self::new_unchecked(1)
        }
        pub fn get(&self) -> u32 {
            T::reduce(self.0 as u64)
        }
        pub fn pow(&self, mut n: u64) -> Self {
            let mut t = Self::one();
            let mut s = *self;
            while n > 0 {
                if n & 1 == 1 {
                    t *= s;
                }
                s *= s;
                n >>= 1;
            }
            t
        }
        pub fn inv(&self) -> Self {
            assert!(!self.is_zero());
            self.pow((T::modulo() - 2) as u64)
        }
    }

    pub fn mod_pow(mut r: u64, mut n: u64, m: u64) -> u64 {
        let mut t = 1 % m;
        while n > 0 {
            if n & 1 == 1 {
                t = t * r % m;
            }
            r = r * r % m;
            n >>= 1;
        }
        t
    }
}
// ---------- end ModInt ----------
// ---------- begin Precalc ----------
mod precalc {
    use super::modint::*;
    #[allow(dead_code)]
    pub struct Precalc<T> {
        inv: Vec<ModInt<T>>,
        fact: Vec<ModInt<T>>,
        ifact: Vec<ModInt<T>>,
    }
    #[allow(dead_code)]
    impl<T: Modulo> Precalc<T> {
        pub fn new(n: usize) -> Precalc<T> {
            let mut inv = vec![ModInt::one(); n + 1];
            let mut fact = vec![ModInt::one(); n + 1];
            let mut ifact = vec![ModInt::one(); n + 1];
            for i in 2..(n + 1) {
                fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
            }
            ifact[n] = fact[n].inv();
            if n > 0 {
                inv[n] = ifact[n] * fact[n - 1];
            }
            for i in (1..n).rev() {
                ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
                inv[i] = ifact[i] * fact[i - 1];
            }
            Precalc {
                inv: inv,
                fact: fact,
                ifact: ifact,
            }
        }
        pub fn inv(&self, n: usize) -> ModInt<T> {
            assert!(n > 0);
            self.inv[n]
        }
        pub fn fact(&self, n: usize) -> ModInt<T> {
            self.fact[n]
        }
        pub fn ifact(&self, n: usize) -> ModInt<T> {
            self.ifact[n]
        }
        pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[n - k]
        }
        pub fn comb(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[k] * self.ifact[n - k]
        }
    }
}
// ---------- end Precalc ----------

use modint::*;

pub trait NTTFriendly: modint::Modulo {
    fn order() -> usize;
    fn zeta() -> u32;
}

type M = ModInt<Mod1_000_000_007>;

impl NTTFriendly for Mod998_244_353 {
    fn order() -> usize {
        8388608
    }
    fn zeta() -> u32 {
        15311432
    }
}

// 列に対する命令をテキトーに詰めあわせ
// modint, primitive type の2つあたりで使うことを想定
// +, -, *
// zero を要求してないのに仮定してる場所がある
//
// 何も考えずに書き始めたらいろいろよくわからないことになった
// 整理
// 長さが等しいときの加算、減算、dot積はok
// 長さが異なるときはどうする?
// 0埋めされてるというイメージなので
// 加算、減算は素直だがdot積はイマイチ
// dot積だけ長さが等しいとしておく?
// あるいは0埋めのイメージを消すか

use std::ops::*;

pub trait Zero: Sized + Add<Output = Self> {
    fn zero() -> Self;
}

pub fn zero<T: Zero>() -> T {
    T::zero()
}

impl<T: Modulo> Zero for ModInt<T> {
    fn zero() -> Self {
        Self::zero()
    }
}

impl Zero for usize {
    fn zero() -> Self {
        0
    }
}

pub trait ArrayAdd {
    type Item;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayAdd for [T]
where
    T: Zero + Copy,
{
    type Item = T;
    fn add(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.add_assign(rhs);
        c
    }
}

pub trait ArrayAddAssign {
    type Item;
    fn add_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayAddAssign for [T]
where
    T: Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x + *a);
    }
}

impl<T> ArrayAddAssign for Vec<T>
where
    T: Zero + Add<Output = T> + Copy,
{
    type Item = T;
    fn add_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().add_assign(rhs);
    }
}

pub trait ArraySub {
    type Item;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArraySub for [T]
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        let mut c = vec![T::zero(); self.len().max(rhs.len())];
        c[..self.len()].copy_from_slice(self);
        c.sub_assign(rhs);
        c
    }
}

pub trait ArraySubAssign {
    type Item;
    fn sub_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArraySubAssign for [T]
where
    T: Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() >= rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x = *x - *a);
    }
}

impl<T> ArraySubAssign for Vec<T>
where
    T: Zero + Sub<Output = T> + Copy,
{
    type Item = T;
    fn sub_assign(&mut self, rhs: &[Self::Item]) {
        if self.len() < rhs.len() {
            self.resize(rhs.len(), T::zero());
        }
        self.as_mut_slice().sub_assign(rhs);
    }
}

pub trait ArrayDot {
    type Item;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayDot for [T]
where
    T: Mul<Output = T> + Copy,
{
    type Item = T;
    fn dot(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        assert!(self.len() == rhs.len());
        self.iter().zip(rhs).map(|p| *p.0 * *p.1).collect()
    }
}

pub trait ArrayDotAssign {
    type Item;
    fn dot_assign(&mut self, rhs: &[Self::Item]);
}

impl<T> ArrayDotAssign for [T]
where
    T: MulAssign + Copy,
{
    type Item = T;
    fn dot_assign(&mut self, rhs: &[Self::Item]) {
        assert!(self.len() == rhs.len());
        self.iter_mut().zip(rhs).for_each(|(x, a)| *x *= *a);
    }
}

pub trait ArrayMul {
    type Item;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayMul for [T]
where
    T: Zero + Mul<Output = T> + Copy,
{
    type Item = T;
    fn mul(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.is_empty() || rhs.is_empty() {
            return vec![];
        }
        let mut res = vec![zero(); self.len() + rhs.len() - 1];
        for (i, a) in self.iter().enumerate() {
            for (c, b) in res[i..].iter_mut().zip(rhs) {
                *c = *c + *a * *b;
            }
        }
        res
    }
}

pub trait ArrayNTT {
    type Item;
    fn ntt(&mut self);
    fn intt(&mut self);
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item>;
}

impl<T> ArrayNTT for [ModInt<T>]
where
    T: NTTFriendly,
{
    type Item = ModInt<T>;
    fn ntt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_e = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_e[i] = es[i] * now;
            now *= ies[i];
        }
        for ph in 1..=len {
            let p = 1 << (len - ph);
            let mut now = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y * now;
                    *x = l + r;
                    *y = l - r;
                }
                now *= sum_e[(!i).trailing_zeros() as usize];
            }
        }
    }
    fn intt(&mut self) {
        let f = self;
        let n = f.len();
        assert!(n.count_ones() == 1);
        assert!(n <= T::order());
        let len = n.trailing_zeros() as usize;
        let mut es = [ModInt::zero(); 30];
        let mut ies = [ModInt::zero(); 30];
        let mut sum_ie = [ModInt::zero(); 30];
        let cnt2 = T::order().trailing_zeros() as usize;
        let mut e = ModInt::new_unchecked(T::zeta());
        let mut ie = e.inv();
        for i in (2..=cnt2).rev() {
            es[i - 2] = e;
            ies[i - 2] = ie;
            e = e * e;
            ie = ie * ie;
        }
        let mut now = ModInt::one();
        for i in 0..(cnt2 - 1) {
            sum_ie[i] = ies[i] * now;
            now *= es[i];
        }
        for ph in (1..=len).rev() {
            let p = 1 << (len - ph);
            let mut inow = ModInt::one();
            for (i, f) in f.chunks_exact_mut(2 * p).enumerate() {
                let (x, y) = f.split_at_mut(p);
                for (x, y) in x.iter_mut().zip(y.iter_mut()) {
                    let l = *x;
                    let r = *y;
                    *x = l + r;
                    *y = (l - r) * inow;
                }
                inow *= sum_ie[(!i).trailing_zeros() as usize];
            }
        }
        let ik = ModInt::new_unchecked((T::modulo() + 1) >> 1).pow(len as u64);
        for f in f.iter_mut() {
            *f *= ik;
        }
    }
    fn multiply(&self, rhs: &[Self::Item]) -> Vec<Self::Item> {
        if self.len().min(rhs.len()) <= 32 {
            return self.mul(rhs);
        }
        let size = (self.len() + rhs.len() - 1).next_power_of_two();
        let mut f = vec![ModInt::zero(); size];
        let mut g = vec![ModInt::zero(); size];
        f[..self.len()].copy_from_slice(self);
        g[..rhs.len()].copy_from_slice(rhs);
        f.ntt();
        g.ntt();
        f.dot_assign(&g);
        f.intt();
        f.truncate(self.len() + rhs.len() - 1);
        f
    }
}

pub trait PolynomialOperation {
    type Item;
    fn eval(&self, x: Self::Item) -> Self::Item;
    fn derivative(&self) -> Vec<Self::Item>;
    fn integral(&self) -> Vec<Self::Item>;
}

impl<T: Modulo> PolynomialOperation for [ModInt<T>] {
    type Item = ModInt<T>;
    fn eval(&self, x: Self::Item) -> Self::Item {
        self.iter().rev().fold(ModInt::zero(), |s, a| s * x + *a)
    }
    fn derivative(&self) -> Vec<Self::Item> {
        if self.len() <= 1 {
            return vec![];
        }
        self[1..]
            .iter()
            .enumerate()
            .map(|(k, a)| ModInt::new_unchecked(k as u32 + 1) * *a)
            .collect()
    }
    fn integral(&self) -> Vec<Self::Item> {
        if self.is_empty() {
            return vec![];
        }
        let mut inv = vec![ModInt::one(); self.len() + 1];
        let mut mul = ModInt::zero();
        for i in 1..=self.len() {
            mul += ModInt::one();
            inv[i] = inv[i - 1] * mul;
        }
        let mut prod = inv[self.len()].inv();
        for i in (1..=self.len()).rev() {
            inv[i] = self[i - 1] * inv[i - 1] * prod;
            prod *= mul;
            mul -= ModInt::one();
        }
        inv[0] = ModInt::zero();
        inv
    }
}

fn read() -> Vec<(u32, u32)> {
    let mut s = String::new();
    use std::io::Read;
    std::io::stdin().read_to_string(&mut s).unwrap();
    let mut it = s.trim().split_whitespace().flat_map(|s| s.parse::<u32>());
    let mut next = || it.next().unwrap();
    let n = next();
    (0..n).map(|_| (next(), next())).collect()
}

fn main() {
    let p = read();
    let mut z = vec![];
    z.extend(p.iter().map(|p| p.0));
    z.extend(p.iter().map(|p| p.1));
    z.sort();
    z.dedup();
    let (a, b) = p[0];
    let ini = vec![M::new(b - a).inv()];
    let mut dp = vec![vec![]; z.len() - 1];
    for (dp, z) in dp.iter_mut().zip(z.windows(2)) {
        if a <= z[0] && z[1] <= b {
            *dp = ini.clone();
        }
    }
    for (i, &(a, b)) in p[1..].iter().enumerate() {
        let mut all = M::zero();
        for (dp, z) in dp.iter().zip(z.windows(2)) {
            let p = dp.integral();
            all += p.eval(M::new(z[1])) - p.eval(M::new(z[0]));
        }
        let inv = M::new(b - a).inv();
        let mut next = vec![vec![]; z.len() - 1];
        let mut sum = M::zero();
        for ((next, dp), z) in next.iter_mut().zip(dp).zip(z.windows(2)) {
            let (l, r) = (z[0], z[1]);
            let p = dp.integral();
            if a <= l && r <= b {
                let mut q = p.add(&[sum - p.eval(M::new(l))]);
                if i % 2 == 1 {
                    q = [all].sub(&q);
                }
                *next = q.mul(&[inv]);
            }
            sum += p.eval(M::new(r)) - p.eval(M::new(l));
        }
        dp = next;
    }
    let ans = dp.iter().zip(z.windows(2)).fold(M::zero(), |s, (dp, z)| {
        let p = dp.integral();
        s + p.eval(M::new(z[1])) - p.eval(M::new(z[0]))
    });
    println!("{}", ans);
}
0