結果

問題 No.1615 Double Down
ユーザー hitonanodehitonanode
提出日時 2021-11-03 15:53:05
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 10,080 bytes
コンパイル時間 2,089 ms
コンパイル使用メモリ 161,732 KB
実行使用メモリ 11,264 KB
最終ジャッジ日時 2024-10-13 05:47:14
合計ジャッジ時間 13,851 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 WA -
testcase_09 AC 412 ms
10,520 KB
testcase_10 AC 408 ms
10,304 KB
testcase_11 AC 409 ms
10,524 KB
testcase_12 AC 249 ms
9,344 KB
testcase_13 AC 237 ms
9,344 KB
testcase_14 AC 241 ms
9,344 KB
testcase_15 AC 292 ms
11,264 KB
testcase_16 AC 291 ms
11,264 KB
testcase_17 AC 283 ms
11,264 KB
testcase_18 AC 501 ms
10,344 KB
testcase_19 AC 487 ms
10,300 KB
testcase_20 AC 503 ms
10,148 KB
testcase_21 AC 469 ms
10,512 KB
testcase_22 AC 483 ms
10,448 KB
testcase_23 AC 458 ms
10,308 KB
testcase_24 AC 439 ms
10,268 KB
testcase_25 AC 438 ms
10,296 KB
testcase_26 AC 464 ms
10,360 KB
testcase_27 WA -
testcase_28 WA -
testcase_29 WA -
testcase_30 WA -
testcase_31 WA -
testcase_32 WA -
testcase_33 WA -
testcase_34 WA -
testcase_35 WA -
testcase_36 WA -
testcase_37 WA -
testcase_38 WA -
testcase_39 WA -
testcase_40 WA -
testcase_41 WA -
testcase_42 WA -
testcase_43 WA -
testcase_44 WA -
testcase_45 AC 2 ms
5,248 KB
testcase_46 AC 1 ms
5,248 KB
testcase_47 AC 1 ms
5,248 KB
testcase_48 AC 1 ms
5,248 KB
testcase_49 AC 2 ms
5,248 KB
testcase_50 AC 2 ms
5,248 KB
testcase_51 AC 2 ms
5,248 KB
testcase_52 AC 2 ms
5,248 KB
testcase_53 AC 2 ms
5,248 KB
testcase_54 AC 2 ms
5,248 KB
testcase_55 AC 2 ms
5,248 KB
testcase_56 AC 2 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <algorithm>
#include <array>
#include <bitset>
#include <cassert>
#include <chrono>
#include <cmath>
#include <complex>
#include <deque>
#include <forward_list>
#include <fstream>
#include <functional>
#include <iomanip>
#include <ios>
#include <iostream>
#include <limits>
#include <list>
#include <map>
#include <numeric>
#include <queue>
#include <random>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); }
template <typename T> bool chmax(T &m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T> bool chmin(T &m, const T q) { return m > q ? (m = q, true) : false; }
int floor_lg(long long x) { return x <= 0 ? -1 : 63 - __builtin_clzll(x); }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> sort_unique(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> int arglb(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::lower_bound(v.begin(), v.end(), x)); }
template <typename T> int argub(const std::vector<T> &v, const T &x) { return std::distance(v.begin(), std::upper_bound(v.begin(), v.end(), x)); }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T, size_t sz> ostream &operator<<(ostream &os, const array<T, sz> &arr) { os << '['; for (auto v : arr) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { os << '('; std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os << ')'; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T, typename TH> ostream &operator<<(ostream &os, const unordered_set<T, TH> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV, typename TH> ostream &operator<<(ostream &os, const unordered_map<TK, TV, TH> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
const string COLOR_RESET = "\033[0m", BRIGHT_GREEN = "\033[1;32m", BRIGHT_RED = "\033[1;31m", BRIGHT_CYAN = "\033[1;36m", NORMAL_CROSSED = "\033[0;9;37m", RED_BACKGROUND = "\033[1;41m", NORMAL_FAINT = "\033[0;2m";
#define dbg(x) cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl
#define dbgif(cond, x) ((cond) ? cerr << BRIGHT_CYAN << #x << COLOR_RESET << " = " << (x) << NORMAL_FAINT << " (L" << __LINE__ << ") " << __FILE__ << COLOR_RESET << endl : cerr)
#else
#define dbg(x) (x)
#define dbgif(cond, x) 0
#endif


// Bipartite matching of undirected bipartite graph (Hopcroft-Karp)
// https://ei1333.github.io/luzhiled/snippets/graph/hopcroft-karp.html
// Comprexity: O(EsqrtV)
// int solve(): enumerate maximum number of matching / return -1 (if graph is not bipartite)
struct BipartiteMatching {
    int V;
    std::vector<std::vector<int>> to; // Adjacency list
    std::vector<int> dist;            // dist[i] = (Distance from i'th node)
    std::vector<int> match;           // match[i] = (Partner of i'th node) or -1 (No parter)
    std::vector<int> used, vv;        //
    std::vector<int> color;           // color of each node(checking bipartition): 0/1/-1(not determined)

    BipartiteMatching() = default;
    BipartiteMatching(int V_) : V(V_), to(V_), match(V_, -1), used(V_), color(V_, -1) {}

    void add_edge(int u, int v) {
        assert(u >= 0 and u < V and v >= 0 and v < V and u != v);
        to[u].push_back(v);
        to[v].push_back(u);
    }

    void bfs() {
        dist.assign(V, -1);
        std::queue<int> q;
        for (int i = 0; i < V; i++) {
            if (!color[i] and !used[i]) { q.emplace(i), dist[i] = 0; }
        }

        while (!q.empty()) {
            int now = q.front();
            q.pop();
            for (auto nxt : to[now]) {
                int c = match[nxt];
                if (c >= 0 and dist[c] == -1) { q.emplace(c), dist[c] = dist[now] + 1; }
            }
        }
    }

    bool dfs(int now) {
        vv[now] = true;
        for (auto nxt : to[now]) {
            int c = match[nxt];
            if (c < 0 or (!vv[c] and dist[c] == dist[now] + 1 and dfs(c))) {
                match[nxt] = now, match[now] = nxt;
                used[now] = true;
                return true;
            }
        }
        return false;
    }

    bool _color_bfs(int root) {
        color[root] = 0;
        std::queue<int> q;
        q.emplace(root);
        while (!q.empty()) {
            int now = q.front(), c = color[now];
            q.pop();
            for (auto nxt : to[now])
                if (color[nxt] == -1)
                    color[nxt] = !c, q.emplace(nxt);
                else if (color[nxt] == c)
                    return false;
        }
        return true;
    }

    int solve() {
        for (int i = 0; i < V; i++)
            if (color[i] == -1) {
                if (!_color_bfs(i)) return -1;
            }
        int ret = 0;
        while (true) {
            bfs();
            vv.assign(V, false);
            int flow = 0;
            for (int i = 0; i < V; i++)
                if (!color[i] and !used[i] and dfs(i)) flow++;
            if (!flow) break;
            ret += flow;
        }
        return ret;
    }

    friend std::ostream &operator<<(std::ostream &os, const BipartiteMatching &bm) {
        os << "{N=" << bm.V << ':';
        for (int i = 0; i < bm.V; i++)
            if (bm.match[i] > i) { os << '(' << i << '-' << bm.match[i] << "),"; }
        os << '}';
        return os;
    }
};


int main() {
    int N, M, K, L;
    cin >> N >> M >> K >> L;
    vector<vector<pint>> z2xy(K + 1);
    REP(l, L) {
        int x, y, z;
        cin >> x >> y >> z;
        x--, y--;
        z2xy[z].emplace_back(x, y + N);
    }
    vector<int> vtp(N + M, 3);

    vector<pint> pending_edges;

    lint ret = 0;
    int nmatch = 0, n_del_match = 0;

    IREP(z, z2xy.size()) {
        for (auto [u, v] : z2xy[z]) {
            if (vtp[u] == 3 and vtp[v] == 3) pending_edges.emplace_back(u, v);
        }
        BipartiteMatching bm(N + M);
        for (auto [u, v] : pending_edges) bm.add_edge(u, v);

        int nmatchnxt = n_del_match + bm.solve();
        ret += lint(nmatchnxt - nmatch) << z;

        vector<vector<int>> to(N + M), rev(N + M);
        for (auto [u, v] : pending_edges) to[u].push_back(v), rev[v].push_back(u);
        REP(i, N) if (bm.match[i] >= N) {
            int j = bm.match[i];
            to[j].push_back(i);
            rev[i].push_back(j);
        }

        vector<int> dfsstatus(N + M);
        auto rec = [&](auto &&self, int now, int color, vector<vector<int>> &to) -> void {
            dfsstatus[now] = color;
            for (auto nxt : to[now]) {
                if (dfsstatus[nxt] == 0) self(self, nxt, color ^ 1, to);
            }
        };
        REP(i, vtp.size()) {
            if (vtp[i] == 3 and bm.match[i] == -1) rec(rec, i, 3, i < N ? to : rev);
        }
        REP(i, dfsstatus.size()) if (!dfsstatus[i]) vtp[i] = 1;

        vector<pint> pending_edge_nxt;
        for (auto [u, v] : pending_edges) {
            if (vtp[u] == 1 or vtp[v] == 1) continue;
            if (vtp[u] == 2 and vtp[v] == 2) continue;
            pending_edge_nxt.emplace_back(u, v);
        }
        pending_edges = pending_edge_nxt;
        nmatch = nmatchnxt, n_del_match = count(vtp.begin(), vtp.end(), 1) / 2;
    }
    cout << ret << endl;
}
0