結果
問題 | No.1615 Double Down |
ユーザー |
![]() |
提出日時 | 2021-11-03 21:55:03 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,155 ms / 10,000 ms |
コード長 | 14,467 bytes |
コンパイル時間 | 2,367 ms |
コンパイル使用メモリ | 142,044 KB |
実行使用メモリ | 15,224 KB |
最終ジャッジ日時 | 2024-10-13 13:30:32 |
合計ジャッジ時間 | 28,045 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 54 |
ソースコード
#line 1 "graph/test/dulmage_mendelsohn.yuki1615.test.cpp"#define PROBLEM "https://yukicoder.me/problems/no/1615"#line 2 "graph/bipartite_matching.hpp"#include <cassert>#include <iostream>#include <vector>// Bipartite matching of undirected bipartite graph (Hopcroft-Karp)// https://ei1333.github.io/luzhiled/snippets/graph/hopcroft-karp.html// Comprexity: O((V + E)sqrtV)// int solve(): enumerate maximum number of matching / return -1 (if graph is not bipartite)struct BipartiteMatching {int V;std::vector<std::vector<int>> to; // Adjacency liststd::vector<int> dist; // dist[i] = (Distance from i'th node)std::vector<int> match; // match[i] = (Partner of i'th node) or -1 (No parter)std::vector<int> used, vv;std::vector<int> color; // color of each node(checking bipartition): 0/1/-1(not determined)BipartiteMatching() = default;BipartiteMatching(int V_) : V(V_), to(V_), match(V_, -1), used(V_), color(V_, -1) {}void add_edge(int u, int v) {assert(u >= 0 and u < V and v >= 0 and v < V and u != v);to[u].push_back(v);to[v].push_back(u);}void _bfs() {dist.assign(V, -1);std::vector<int> q;int lq = 0;for (int i = 0; i < V; i++) {if (!color[i] and !used[i]) q.push_back(i), dist[i] = 0;}while (lq < int(q.size())) {int now = q[lq++];for (auto nxt : to[now]) {int c = match[nxt];if (c >= 0 and dist[c] == -1) q.push_back(c), dist[c] = dist[now] + 1;}}}bool _dfs(int now) {vv[now] = true;for (auto nxt : to[now]) {int c = match[nxt];if (c < 0 or (!vv[c] and dist[c] == dist[now] + 1 and _dfs(c))) {match[nxt] = now, match[now] = nxt;used[now] = true;return true;}}return false;}bool _color_bfs(int root) {color[root] = 0;std::vector<int> q{root};int lq = 0;while (lq < int(q.size())) {int now = q[lq++], c = color[now];for (auto nxt : to[now]) {if (color[nxt] == -1) {color[nxt] = !c, q.push_back(nxt);} else if (color[nxt] == c) {return false;}}}return true;}int solve() {for (int i = 0; i < V; i++) {if (color[i] == -1 and !_color_bfs(i)) return -1;}int ret = 0;while (true) {_bfs();vv.assign(V, false);int flow = 0;for (int i = 0; i < V; i++) {if (!color[i] and !used[i] and _dfs(i)) flow++;}if (!flow) break;ret += flow;}return ret;}template <class OStream> friend OStream &operator<<(OStream &os, const BipartiteMatching &bm) {os << "{N=" << bm.V << ':';for (int i = 0; i < bm.V; i++) {if (bm.match[i] > i) os << '(' << i << '-' << bm.match[i] << "),";}return os << '}';}};#line 2 "graph/strongly_connected_components.hpp"#include <algorithm>#line 5 "graph/strongly_connected_components.hpp"// CUT begin// Directed graph library to find strongly connected components (強連結成分分解)// 0-indexed directed graph// Complexity: O(V + E)struct DirectedGraphSCC {int V; // # of Verticesstd::vector<std::vector<int>> to, from;std::vector<int> used; // Only true/falsestd::vector<int> vs;std::vector<int> cmp;int scc_num = -1;DirectedGraphSCC(int V = 0) : V(V), to(V), from(V), cmp(V) {}void _dfs(int v) {used[v] = true;for (auto t : to[v])if (!used[t]) _dfs(t);vs.push_back(v);}void _rdfs(int v, int k) {used[v] = true;cmp[v] = k;for (auto t : from[v])if (!used[t]) _rdfs(t, k);}void add_edge(int from_, int to_) {assert(from_ >= 0 and from_ < V and to_ >= 0 and to_ < V);to[from_].push_back(to_);from[to_].push_back(from_);}// Detect strongly connected components and return # of them.// Also, assign each vertex `v` the scc id `cmp[v]` (0-indexed)int FindStronglyConnectedComponents() {used.assign(V, false);vs.clear();for (int v = 0; v < V; v++)if (!used[v]) _dfs(v);used.assign(V, false);scc_num = 0;for (int i = (int)vs.size() - 1; i >= 0; i--)if (!used[vs[i]]) _rdfs(vs[i], scc_num++);return scc_num;}// Find and output the vertices that form a closed cycle.// output: {v_1, ..., v_C}, where C is the length of cycle,// {} if there's NO cycle (graph is DAG)int _c, _init;std::vector<int> _ret_cycle;bool _dfs_detectcycle(int now, bool b0) {if (now == _init and b0) return true;for (auto nxt : to[now])if (cmp[nxt] == _c and !used[nxt]) {_ret_cycle.emplace_back(nxt), used[nxt] = 1;if (_dfs_detectcycle(nxt, true)) return true;_ret_cycle.pop_back();}return false;}std::vector<int> DetectCycle() {int ns = FindStronglyConnectedComponents();if (ns == V) return {};std::vector<int> cnt(ns);for (auto x : cmp) cnt[x]++;_c = std::find_if(cnt.begin(), cnt.end(), [](int x) { return x > 1; }) - cnt.begin();_init = std::find(cmp.begin(), cmp.end(), _c) - cmp.begin();used.assign(V, false);_ret_cycle.clear();_dfs_detectcycle(_init, false);return _ret_cycle;}// After calling `FindStronglyConnectedComponents()`, generate a new graph by uniting all vertices// belonging to the same component(The resultant graph is DAG).DirectedGraphSCC GenerateTopologicalGraph() {DirectedGraphSCC newgraph(scc_num);for (int s = 0; s < V; s++)for (auto t : to[s]) {if (cmp[s] != cmp[t]) newgraph.add_edge(cmp[s], cmp[t]);}return newgraph;}};// 2-SAT solver: Find a solution for `(Ai v Aj) ^ (Ak v Al) ^ ... = true`// - `nb_sat_vars`: Number of variables// - Considering a graph with `2 * nb_sat_vars` vertices// - Vertices [0, nb_sat_vars) means `Ai`// - vertices [nb_sat_vars, 2 * nb_sat_vars) means `not Ai`struct SATSolver : DirectedGraphSCC {int nb_sat_vars;std::vector<int> solution;SATSolver(int nb_variables = 0) : DirectedGraphSCC(nb_variables * 2), nb_sat_vars(nb_variables), solution(nb_sat_vars) {}void add_x_or_y_constraint(bool is_x_true, int x, bool is_y_true, int y) {assert(x >= 0 and x < nb_sat_vars);assert(y >= 0 and y < nb_sat_vars);if (!is_x_true) x += nb_sat_vars;if (!is_y_true) y += nb_sat_vars;add_edge((x + nb_sat_vars) % (nb_sat_vars * 2), y);add_edge((y + nb_sat_vars) % (nb_sat_vars * 2), x);}// Solve the 2-SAT problem. If no solution exists, return `false`.// Otherwise, dump one solution to `solution` and return `true`.bool run() {FindStronglyConnectedComponents();for (int i = 0; i < nb_sat_vars; i++) {if (cmp[i] == cmp[i + nb_sat_vars]) return false;solution[i] = cmp[i] > cmp[i + nb_sat_vars];}return true;}};#line 5 "graph/dulmage_mendelsohn_decomposition.hpp"#include <utility>#line 7 "graph/dulmage_mendelsohn_decomposition.hpp"// Dulmage–Mendelsohn (DM) decomposition (DM 分解)// return: [(W+0, W-0), (W+1,W-1),...,(W+(k+1), W-(k+1))]// : sequence of pair (left vetrices, right vertices)// - |W+0| < |W-0| or both empty// - |W+i| = |W-i| (i = 1, ..., k)// - |W+(k+1)| > |W-(k+1)| or both empty// - W is topologically sorted// Example:// (2, 2, [(0,0), (0,1), (1,0)]) => [([],[]),([0,],[1,]),([1,],[0,]),([],[]),]// Complexity: O(N + (N + M) sqrt(N))// Verified: https://yukicoder.me/problems/no/1615std::vector<std::pair<std::vector<int>, std::vector<int>>>dulmage_mendelsohn(int L, int R, const std::vector<std::pair<int, int>> &edges) {for (auto p : edges) {assert(0 <= p.first and p.first < L);assert(0 <= p.second and p.second < R);}BipartiteMatching bm(L + R);for (auto p : edges) bm.add_edge(p.first, L + p.second);bm.solve();DirectedGraphSCC scc(L + R);for (auto p : edges) scc.add_edge(p.first, L + p.second);for (int l = 0; l < L; ++l) {if (bm.match[l] >= L) scc.add_edge(bm.match[l], l);}int nscc = scc.FindStronglyConnectedComponents();std::vector<int> cmp_map(nscc, -2);std::vector<int> vis(L + R);std::vector<int> st;for (int c = 0; c < 2; ++c) {std::vector<std::vector<int>> to(L + R);auto color = [&L](int x) { return x >= L; };for (auto p : edges) {int u = p.first, v = L + p.second;if (color(u) != c) std::swap(u, v);to[u].push_back(v);if (bm.match[u] == v) to[v].push_back(u);}for (int i = 0; i < L + R; ++i) {if (bm.match[i] >= 0 or color(i) != c or vis[i]) continue;vis[i] = 1, st = {i};while (!st.empty()) {int now = st.back();cmp_map[scc.cmp[now]] = c - 1;st.pop_back();for (int nxt : to[now]) {if (!vis[nxt]) vis[nxt] = 1, st.push_back(nxt);}}}}int nset = 1;for (int n = 0; n < nscc; ++n) {if (cmp_map[n] == -2) cmp_map[n] = nset++;}for (auto &x : cmp_map) {if (x == -1) x = nset;}nset++;std::vector<std::pair<std::vector<int>, std::vector<int>>> groups(nset);for (int l = 0; l < L; ++l) {if (bm.match[l] < 0) continue;int c = cmp_map[scc.cmp[l]];groups[c].first.push_back(l);groups[c].second.push_back(bm.match[l] - L);}for (int l = 0; l < L; ++l) {if (bm.match[l] >= 0) continue;int c = cmp_map[scc.cmp[l]];groups[c].first.push_back(l);}for (int r = 0; r < R; ++r) {if (bm.match[L + r] >= 0) continue;int c = cmp_map[scc.cmp[L + r]];groups[c].second.push_back(r);}return groups;}#line 6 "graph/test/dulmage_mendelsohn.yuki1615.test.cpp"#include <set>#line 9 "graph/test/dulmage_mendelsohn.yuki1615.test.cpp"using namespace std;std::vector<std::pair<std::vector<int>, std::vector<int>>>verify_dulmage_mendelsohn(int L, int R, const std::vector<std::pair<int, int>> &edges) {auto ret = dulmage_mendelsohn(L, R, edges);assert(ret.size() >= 2);vector<int> lord(L, -1), rord(R, -1);set<pair<int, int>> edges_set(edges.begin(), edges.end());for (int igrp = 0; igrp < int(ret.size()); ++igrp) {for (int vl : ret[igrp].first) {assert(lord[vl] < 0);lord[vl] = igrp;}for (int vr : ret[igrp].second) {assert(rord[vr] < 0);rord[vr] = igrp;}if (igrp == 0) {assert(ret[igrp].first.size() < ret[igrp].second.size() or ret[igrp].first.empty());} else if (igrp + 1 == int(ret.size())) {assert(ret[igrp].first.size() > ret[igrp].second.size() or ret[igrp].second.empty());} else {assert(ret[igrp].first.size() == ret[igrp].second.size());assert(ret[igrp].first.size());}for (int j = 0; j < min<int>(ret[igrp].first.size(), ret[igrp].second.size()); ++j) {auto u = ret[igrp].first[j], v = ret[igrp].second[j];assert(edges_set.count(make_pair(u, v)));}}assert(count(lord.begin(), lord.end(), -1) == 0);assert(count(rord.begin(), rord.end(), -1) == 0);for (auto e : edges) {assert(0 <= e.first and e.first < L);assert(0 <= e.second and e.second < R);assert(lord.at(e.first) <= rord.at(e.second)); // Check topological order}return ret;}int main() {cin.tie(nullptr), ios::sync_with_stdio(false);int N, M, K, L;cin >> N >> M >> K >> L;vector<vector<pair<int, int>>> z2xy(K + 1);while (L--) {int x, y, z;cin >> x >> y >> z;x--, y--;z2xy[K - z].emplace_back(x, y);}vector<int> vtp(N + M, 3);vector<pair<int, int>> alive_edges;long long ret = 0;int nmatch = 0;vector<int> experience12(N + M);vector<int> fixed_pair(N, -1);for (const auto &xys : z2xy) {for (auto p : xys) {int u = p.first, v = p.second;if (experience12[u] or experience12[N + v]) continue;alive_edges.emplace_back(u, v);}auto dm_ret = verify_dulmage_mendelsohn(N, M, alive_edges);int nmatchnxt = 0;for (const auto &p : dm_ret) nmatchnxt += min(p.first.size(), p.second.size());ret = ret * 2 + nmatchnxt - nmatch;for (auto l : dm_ret.front().first) vtp[l] = 2, experience12[l] = 1;for (auto r : dm_ret.front().second) vtp[r + N] = 3;for (auto l : dm_ret.back().first) vtp[l] = 3;for (auto r : dm_ret.back().second) vtp[r + N] = 2, experience12[r + N] = 1;for (int i = 1; i + 1 < int(dm_ret.size()); ++i) {for (int j = 0; j < int(dm_ret[i].first.size()); ++j) {int l = dm_ret[i].first[j], r = dm_ret[i].second[j];if (fixed_pair[l] < 0) {vtp[l] = vtp[r + N] = 1, fixed_pair[l] = r;experience12[l] = experience12[r + N] = 1;alive_edges.emplace_back(l, r);}}}for (int cur = 0; cur < int(alive_edges.size());) {int u = alive_edges[cur].first, v = alive_edges[cur].second;if (vtp[u] + vtp[v + N] == 5 or fixed_pair[u] == v) {cur++;} else {alive_edges[cur].swap(alive_edges.back());alive_edges.pop_back();}}nmatch = nmatchnxt;}cout << ret << endl;}