結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
nonamae
|
| 提出日時 | 2021-11-04 01:34:00 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 12,215 bytes |
| コンパイル時間 | 875 ms |
| コンパイル使用メモリ | 47,952 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-10-13 17:59:27 |
| 合計ジャッジ時間 | 1,521 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 7 WA * 3 |
ソースコード
#pragma region opt
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma endregion opt
#pragma region header
#define _GNU_SOURCE
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <string.h>
#include <time.h>
#pragma endregion header
#pragma region type
/* signed integer */
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
typedef __int128_t i128;
/* unsigned integer */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef __uint128_t u128;
/* floating point number */
typedef float f32;
typedef double f64;
typedef long double f80;
#pragma endregion type
#pragma region macro
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define SWAP(a, b) (((a) ^= (b)), ((b) ^= (a)), ((a) ^= (b)))
#define POPCNT32(a) __builtin_popcount((a))
#define POPCNT64(a) __builtin_popcountll((a))
#define CTZ32(a) __builtin_ctz((a))
#define CLZ32(a) __builtin_clz((a))
#define CTZ64(a) __builtin_ctzll((a))
#define CLZ64(a) __builtin_clzll((a))
#define HAS_SINGLE_BIT32(a) (__builtin_popcount((a)) == (1))
#define HAS_SINGLE_BIT64(a) (__builtin_popcountll((a)) == (1))
#define MSB32(a) ((31) - __builtin_clz((a)))
#define MSB64(a) ((63) - __builtin_clzll((a)))
#define BIT_WIDTH32(a) ((a) ? ((32) - __builtin_clz((a))) : (0))
#define BIT_WIDTH64(a) ((a) ? ((64) - __builtin_clzll((a))) : (0))
#define LSBit(a) ((a) & (-(a)))
#define CLSBit(a) ((a) & ((a) - (1)))
#define BIT_CEIL32(a) ((!(a)) ? (1) : ((POPCNT32(a)) == (1) ? ((1u) << ((31) - CLZ32((a)))) : ((1u) << ((32) - CLZ32(a)))))
#define BIT_CEIL64(a) ((!(a)) ? (1) : ((POPCNT64(a)) == (1) ? ((1ull) << ((63) - CLZ64((a)))) : ((1ull) << ((64) - CLZ64(a)))))
#define BIT_FLOOR32(a) ((!(a)) ? (0) : ((1u) << ((31) - CLZ32((a)))))
#define BIT_FLOOR64(a) ((!(a)) ? (0) : ((1ull) << ((63) - CLZ64((a)))))
#define _ROTL32(x, s) (((x) << ((s) % (32))) | (((x) >> ((32) - ((s) % (32))))))
#define _ROTR32(x, s) (((x) >> ((s) % (32))) | (((x) << ((32) - ((s) % (32))))))
#define ROTL32(x, s) (((s) == (0)) ? (x) : ((((i64)(s)) < (0)) ? (_ROTR32((x), -(s))) : (_ROTL32((x), (s)))))
#define ROTR32(x, s) (((s) == (0)) ? (x) : ((((i64)(s)) < (0)) ? (_ROTL32((x), -(s))) : (_ROTR32((x), (s)))))
#define _ROTL64(x, s) (((x) << ((s) % (64))) | (((x) >> ((64) - ((s) % (64))))))
#define _ROTR64(x, s) (((x) >> ((s) % (64))) | (((x) << ((64) - ((s) % (64))))))
#define ROTL64(x, s) (((s) == (0)) ? (x) : ((((i128)(s)) < (0)) ? (_ROTR64((x), -(s))) : (_ROTL64((x), (s)))))
#define ROTR64(x, s) (((s) == (0)) ? (x) : ((((i128)(s)) < (0)) ? (_ROTL64((x), -(s))) : (_ROTR64((x), (s)))))
#pragma endregion macro
#pragma region io
int read_int(void)
{
// -2147483648 ~ 2147483647 (> 10 ^ 9)
int c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57)
if (c == 45)
f = -f;
while (47 < c && c < 58)
{
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
i32 in_i32(void)
{
// -2147483648 ~ 2147483647 (> 10 ^ 9)
i32 c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57)
if (c == 45)
f = -f;
while (47 < c && c < 58)
{
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
u32 in_u32(void)
{
// 0 ~ 4294967295 (> 10 ^ 9)
u32 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57)
;
while (47 < c && c < 58)
{
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return x;
}
i64 in_i64(void)
{
// -9223372036854775808 ~ 9223372036854775807 (> 10 ^ 18)
i64 c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57)
if (c == 45)
f = -f;
while (47 < c && c < 58)
{
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
u64 in_u64(void)
{
// 0 ~ 18446744073709551615 (> 10 ^ 19)
u64 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57)
;
while (47 < c && c < 58)
{
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return x;
}
static inline void write_int_inner(int x)
{
if (x >= 10)
write_int_inner(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void write_int(int x)
{
if (x < 0)
{
putchar_unlocked('-');
x = -x;
}
write_int_inner(x);
}
static inline void out_i32_inner(i32 x)
{
if (x >= 10)
out_i32_inner(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void out_i32(i32 x)
{
if (x < 0)
{
putchar_unlocked('-');
x = -x;
}
out_i32_inner(x);
}
void out_u32(u32 x)
{
if (x >= 10)
out_u32(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void out_i64_inner(i64 x)
{
if (x >= 10)
out_i64_inner(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void out_i64(i64 x)
{
if (x < 0)
{
putchar_unlocked('-');
x = -x;
}
out_i64_inner(x);
}
void out_u64(u64 x)
{
if (x >= 10)
out_u64(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void NL(void) { putchar_unlocked('\n'); }
void SP(void) { putchar_unlocked(' '); }
void write_int_array(int *a, int a_len)
{
for (int i = 0; i < a_len; i++)
{
if (i)
SP();
write_int(a[i]);
}
NL();
}
void out_i32_array(i32 *a, int a_len)
{
for (int i = 0; i < a_len; i++)
{
if (i)
SP();
out_i32(a[i]);
}
NL();
}
void out_u32_array(u32 *a, int a_len)
{
for (int i = 0; i < a_len; i++)
{
if (i)
SP();
out_u32(a[i]);
}
NL();
}
void out_i64_array(i64 *a, int a_len)
{
for (int i = 0; i < a_len; i++)
{
if (i)
SP();
out_i64(a[i]);
}
NL();
}
void out_u64_array(u64 *a, int a_len)
{
for (int i = 0; i < a_len; i++)
{
if (i)
SP();
out_u64(a[i]);
}
NL();
}
#pragma endregion io
#pragma region binary gcd
u32 bin_gcd_u32(u32 a, u32 b)
{
if (!a || !b)
return a | b;
u32 shift = CTZ32(a | b);
a >>= CTZ32(a);
do
{
b >>= CTZ32(b);
if (a > b)
SWAP(a, b);
b -= a;
} while (b);
return a << shift;
}
u64 bin_gcd_u64(u64 a, u64 b)
{
if (!a || !b)
return a | b;
u64 shift = CTZ64(a | b);
a >>= CTZ64(a);
do
{
b >>= CTZ64(b);
if (a > b)
SWAP(a, b);
b -= a;
} while (b);
return a << shift;
}
u64 bin_lcm_u64(u32 a, u32 b) { return (u64)a / bin_gcd_u32(a, b) * b; }
#pragma endregion binary gcd
#pragma region xorshift
const f64 _R_ = 1.0 / 0xffffffffffffffff;
static u64 _xorshift_state_ = 88172645463325252ULL;
u64 next_rand_xorshift(void)
{
_xorshift_state_ = _xorshift_state_ ^ (_xorshift_state_ << 7);
return _xorshift_state_ = _xorshift_state_ ^ (_xorshift_state_ >> 9);
}
void rand_init_xorshift(u64 seed)
{
_xorshift_state_ += seed;
(void)next_rand_xorshift();
}
u64 random_range_xorshift(u64 l, u64 r) { return next_rand_xorshift() % (r - l + 1) + l; }
f64 probability_xorshift(void) { return _R_ * next_rand_xorshift(); }
#pragma endregion xorshift
#pragma region m32
typedef uint32_t m32;
m32 _one_m32(u32 mod) { return (u32)-1u % mod + 1; }
m32 _r2_m32(u32 mod) { return (u64)(i64)-1 % mod + 1; }
m32 _inv_m32(u32 mod)
{
u32 inv = mod;
for (int i = 0; i < 4; ++i)
inv *= 2 - inv * mod;
return inv;
/**
u32 u = 1, v = 0, x = 1u << 31;
for (int i = 0; i < 32; i++) {
if (u & 1) u = (u + mod) >> 1, v = (v >> 1) + x;
else u >>= 1, v >>= 1;
}
return -v;
*/
}
m32 _reduce_m32(u64 a, m32 inv, u32 mod)
{
u32 y = (u32)(a >> 32) - (u32)(((u64)((u32)a * inv) * mod) >> 32);
return (i32)y < 0 ? y + mod : y;
}
m32 to_m32(u32 a, m32 r2, m32 inv, u32 mod) { return _reduce_m32((u64)a * r2, inv, mod); }
u32 from_m32(m32 A, m32 inv, u32 mod) { return _reduce_m32(A, inv, mod); }
m32 add_m32(m32 A, m32 B, u32 mod)
{
A += B - mod;
if ((i32)A < 0)
A += mod;
return A;
}
m32 sub_m32(m32 A, m32 B, u32 mod)
{
if ((i32)(A -= B) < 0)
A += 2 * mod;
return A;
}
m32 min_m32(m32 A, u32 mod) { return sub_m32(0u, A, mod); }
m32 mul_m32(m32 A, m32 B, m32 inv, u32 mod) { return _reduce_m32((u64)A * B, inv, mod); }
m32 pow_m32(m32 A, i32 n, m32 inv, u32 mod)
{
m32 ret = _one_m32(mod);
while (n > 0)
{
if (n & 1)
ret = mul_m32(ret, A, inv, mod);
A = mul_m32(A, A, inv, mod);
n >>= 1;
}
return ret;
}
m32 inv_m32(m32 A, m32 inv, u32 mod) { return pow_m32(A, (i32)mod - 2, inv, mod); }
m32 div_m32(m32 A, m32 B, m32 inv, u32 mod)
{
/* assert(is_prime(mod)); */
return mul_m32(A, inv_m32(B, inv, mod), inv, mod);
}
m32 in_m32(m32 r2, m32 inv, u32 mod)
{
u32 c, a = 0;
while (c = getchar_unlocked(), c < 48 || c > 57)
;
while (47 < c && c < 58)
{
a = a * 10 + c - 48;
c = getchar_unlocked();
}
return to_m32(a, r2, inv, mod);
}
void out_m32(m32 A, m32 inv, u32 mod)
{
u32 a = from_m32(A, inv, mod);
out_u32(a);
}
#pragma endregion m32
#pragma region m64
typedef uint64_t m64;
m64 _one_m64(u64 mod) { return (u64)-1ull % mod + 1; }
m64 _r2_m64(u64 mod) { return (u128)(i128)-1 % mod + 1; }
m64 _inv_m64(u64 mod)
{
m64 inv = mod;
for (int i = 0; i < 5; i++)
inv *= 2 - inv * mod;
return inv;
}
m64 _reduce_m64(u128 a, m64 inv, u64 mod)
{
u64 y = (u64)(a >> 64) - (u64)(((u128)((u64)a * inv) * mod) >> 64);
return (i64)y < 0 ? y + mod : y;
}
m64 to_m64(u64 a, m64 r2, m64 inv, u64 mod) { return _reduce_m64((u128)a * r2, inv, mod); }
u64 from_m64(m64 A, m64 inv, u64 mod) { return _reduce_m64(A, inv, mod); }
m64 add_m64(m64 A, m64 B, u64 mod)
{
A += B - mod;
if ((i64)A < 0)
A += mod;
return A;
}
m64 sub_m64(m64 A, m64 B, u64 mod)
{
if ((i64)(A -= B) < 0)
A += 2 * mod;
return A;
}
m64 min_m64(m64 A, u64 mod) { return sub_m64(0ull, A, mod); }
m64 mul_m64(m64 A, m64 B, m64 inv, u64 mod) { return _reduce_m64((u128)A * B, inv, mod); }
m64 pow_m64(m64 A, i64 n, m64 inv, u64 mod)
{
m64 ret = _one_m64(mod);
while (n > 0)
{
if (n & 1)
ret = mul_m64(ret, A, inv, mod);
A = mul_m64(A, A, inv, mod);
n >>= 1;
}
return ret;
}
m64 inv_m64(m64 A, m64 inv, u64 mod) { return pow_m64(A, (i64)mod - 2, inv, mod); }
m64 div_m64(m64 A, m64 B, m64 inv, u64 mod)
{
/* assert(is_prime(mod)); */
return mul_m64(A, inv_m64(B, inv, mod), inv, mod);
}
m64 in_m64(m64 r2, m64 inv, u64 mod)
{
u64 c, a = 0;
while (c = getchar_unlocked(), c < 48 || c > 57)
;
while (47 < c && c < 58)
{
a = a * 10 + c - 48;
c = getchar_unlocked();
}
return to_m64(a, r2, inv, mod);
}
void out_m64(m64 A, m64 inv, u64 mod)
{
u64 a = from_m64(A, inv, mod);
out_u64(a);
}
#pragma endregion m64
#pragma region miller_rabin_primary_test
bool is_prime(u64 n)
{
if (n <= 15ul)
return n == 2ul || n == 3ul || n == 5ul || n == 7ul || n == 11ul || n == 13ul;
if (!(n & 1))
return false;
if (bin_gcd_u64(n, 15ul) != 1)
return false;
u64 m = n - 1;
u64 s = CTZ64(m);
u64 d = m >> s;
m64 r2 = _r2_m64(n);
m64 inv = _inv_m64(n);
m64 one = _one_m64(n);
m64 rev = to_m64(m, r2, inv, n);
for (int i = 0; i < 5; i++)
{
u64 a = random_range_xorshift(2ull, n - 1);
m64 A = to_m64(a, r2, inv, n);
u64 t = d;
m64 y = pow_m64(A, t, inv, n);
while (t != m && y != one && y != rev)
{
y = mul_m64(y, y, inv, n);
t <<= 1;
}
if (y != rev && (!(t & 1)))
return false;
}
return true;
}
#pragma endregion miller_rabin_primary_test
void Main(void)
{
int n = read_int();
while (n--)
{
u64 x = in_u64();
out_u64(x);
SP();
write_int(is_prime(x));
NL();
}
}
int main(void)
{
Main();
return 0;
}
nonamae