結果
問題 | No.612 Move on grid |
ユーザー |
|
提出日時 | 2021-11-05 15:37:45 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 12,257 bytes |
コンパイル時間 | 3,618 ms |
コンパイル使用メモリ | 222,148 KB |
最終ジャッジ日時 | 2025-01-25 11:53:24 |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 WA * 2 |
other | AC * 2 WA * 15 |
ソースコード
#include <bits/stdc++.h>using namespace std;using i64 = long long;#define rep(i,s,e) for(i64 (i) = (s);(i) < (e);(i)++)#define all(x) x.begin(),x.end()#define STRINGIFY(n) #n#define TOSTRING(n) STRINGIFY(n)#define PREFIX "#" TOSTRING(__LINE__) "| "#define debug(x) \{ \std::cout << PREFIX << #x << " = " << x << std::endl; \}std::ostream& output_indent(std::ostream& os, int ind) {for(int i = 0; i < ind; i++) os << " ";return os;}template<class S, class T> std::ostream& operator<<(std::ostream& os, const std::pair<S, T>& p);template<class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v);template<class S, class T> std::ostream& operator<<(std::ostream& os, const std::pair<S, T>& p) {return (os << "(" << p.first << ", " << p.second << ")");}template<class T> std::ostream& operator<<(std::ostream& os, const std::vector<T>& v) {os << "[";for(int i = 0;i < v.size();i++) os << v[i] << ", ";return (os << "]");}template<class T>static inline std::vector<T> ndvec(size_t&& n, T val) { return std::vector<T>(n, std::forward<T>(val)); }template<class... Tail>static inline auto ndvec(size_t&& n, Tail&&... tail) {return std::vector<decltype(ndvec(std::forward<Tail>(tail)...))>(n, ndvec(std::forward<Tail>(tail)...));}template<class Cond> struct chain {Cond cond; chain(Cond cond) : cond(cond) {}template<class T> bool operator()(T& a, const T& b) const { if(cond(a, b)) { a = b; return true; } return false; }};template<class Cond> chain<Cond> make_chain(Cond cond) { return chain<Cond>(cond); }#include <iostream>using i64 = long long;template<i64 M> struct modint { i64 a;constexpr modint(const i64 x = 0): a((x%M+M)%M){}constexpr i64 value() const { return a; }constexpr modint inv() const { return this->pow(M-2); }constexpr modint pow(i64 r) const {modint ans(1); modint aa = *this;while(r) { if(r & 1) ans *= aa; aa *= aa; r >>= 1; }return ans;}constexpr modint& operator=(const i64 r) { a = (r % M + M) % M; return *this; }constexpr modint& operator+=(const modint r) { a += r.a; if(a >= M) a -= M; return *this; }constexpr modint& operator-=(const modint r) { a -= r.a; if(a < 0) a += M; return *this; }constexpr modint& operator*=(const modint r) { a = a * r.a % M; return *this; }constexpr modint& operator/=(const modint r) { (*this) *= r.inv(); return *this; }constexpr modint operator+(const modint r) const { return modint(*this) += r; }constexpr modint operator-(const modint r) const { return modint(*this) -= r; }constexpr modint operator*(const modint r) const { return modint(*this) *= r; }constexpr modint operator/(const modint r) const { return modint(*this) /= r; }constexpr bool operator!=(const modint r) const { return this->value() != r.value(); }};template<const i64 M> std::ostream& operator<<(std::ostream& os, const modint<M>& m) { os << m.value(); return os; }#include <vector>using namespace std;constexpr i64 NTT_PRIMES[][2] = {{1224736769, 3}, // 2^24 * 73 + 1,{1053818881, 7}, // 2^20 * 3 * 5 * 67 + 1{1051721729, 6}, // 2^20 * 17 * 59 + 1{1045430273, 3}, // 2^20 * 997 + 1{1012924417, 5}, // 2^21 * 3 * 7 * 23 + 1{1007681537, 3}, // 2^20 * 31^2 + 1{1004535809, 3}, // 2^21 * 479 + 1{998244353, 3}, // 2^23 * 7 * 17 + 1{985661441, 3}, // 2^22 * 5 * 47 + 1{976224257, 3}, // 2^20 * 7^2 * 19 + 1{975175681, 17}, // 2^21 * 3 * 5 * 31 + 1{962592769, 7}, // 2^21 * 3^3 * 17 + 1{950009857, 7}, // 2^21 * 4 * 151 + 1{943718401, 7}, // 2^22 * 3^2 * 5^2 + 1{935329793, 3}, // 2^22 * 223 + 1{924844033, 5}, // 2^21 * 3^2 * 7^2 + 1{469762049, 3}, // 2^26 * 7 + 1{167772161, 3}, // 2^25 * 5 + 1};template<const i64 mod, const i64 primitive>vector<modint<mod>> number_theoretic_transform(vector<modint<mod>> a) {i64 n = a.size();for(i64 s = n >> 1; s >= 1; s >>= 1) {modint<mod> zeta = modint<mod>(primitive).pow((mod - 1) / (s << 1));for(i64 i = 0; i < n; i += (s << 1)) {modint<mod> zi = 1;for(i64 j = 0;j < s;j++) {modint<mod> t = a[i + j] - a[s + i + j];a[i + j] += a[s + i + j];a[s + i + j] = t * zi;zi = zi * zeta;}}}return a;}template<const i64 mod, const i64 primitive>vector<modint<mod>> inverse_number_theoretic_transform(vector<modint<mod>> a) {i64 n = a.size();for(i64 s = 1; s < n; s <<= 1) {modint<mod> zeta = modint<mod>(primitive).pow((mod - 1) / (s << 1)).pow(mod - 2);for(i64 i = 0; i < n; i += (s << 1)) {modint<mod> zi = 1;for(i64 j = 0;j < s;j++) {modint<mod> t = a[s + i + j] * zi;a[s + i + j] = a[i + j] - t;a[i + j] = a[i + j] + t;zi = zi * zeta;}}}auto inv_n = modint<mod>(n).pow(mod - 2);for(int i = 0;i < n;i++) a[i] *= inv_n;return a;}template<const i64 mod, const i64 primitive>struct fps_ntt_multiply {using fps_type = modint<mod>;using conv_type = modint<mod>;static std::vector<conv_type> dft(std::vector<fps_type> arr) {return number_theoretic_transform<mod, primitive>(std::move(arr));}static std::vector<fps_type> idft(std::vector<conv_type> arr) {return inverse_number_theoretic_transform<mod, primitive>(std::move(arr));}static std::vector<conv_type> multiply(std::vector<conv_type> a, std::vector<conv_type> b) {for(int i = 0;i < a.size();i++) a[i] *= b[i];return a;}};#include <tuple>#include <bits/stdc++.h>using namespace std;using i64 = long long;i64 pow_mod(i64 x, i64 r, i64 mod) {i64 ans = 1;while(r) {if(r & 1) ans = (ans * x) % mod;r >>= 1;x = x * x % mod;}return ans;}i64 inv_mod(i64 x, i64 mod) {return pow_mod(x, mod - 2, mod);}i64 garner(const vector<i64> &x, vector<i64> mods, i64 mod) {mods.emplace_back(mod);vector<i64> coeffs(x.size() + 1, 1);vector<i64> constants(x.size() + 1, 0);for(i64 i = 0; i < x.size(); i++) {i64 v = (x[i] - constants[i]) * inv_mod(coeffs[i], mods[i]) % mods[i];if(v < 0) v += mods[i];for(i64 j = i + 1; j < x.size() + 1; j++) {constants[j] = (constants[j] + coeffs[j] * v) % mods[j];coeffs[j] = (coeffs[j] * mods[i]) % mods[j];}}return constants.back();}template<i64 M, i64... NTTis>struct fps_multiply_arb {using fps_type = std::vector<modint<M>>;using conv_type = std::tuple<std::vector<modint<NTT_PRIMES[NTTis][0]>>...>;const static std::size_t tsize = std::tuple_size<conv_type>::value;template<i64 M2, i64 primitive>static std::vector<modint<M2>> dft_m2(const fps_type& arr) {std::vector<modint<M2>> res(arr.size());for(std::size_t i = 0; i < arr.size(); i++)res[i] = modint<M2>(arr[i].value());return number_theoretic_transform<M2, primitive>(std::move(res));}template<i64 M2, i64 primitive>static std::vector<modint<M2>> idft_m2(std::vector<modint<M2>> arr) {return inverse_number_theoretic_transform<M2, primitive>(std::move(arr));}template<std::size_t... I>static fps_type idft_func(std::index_sequence<I...>, conv_type arr) {arr = std::make_tuple(idft_m2<NTT_PRIMES[NTTis][0], NTT_PRIMES[NTTis][1]>(std::get<I>(arr))...);std::size_t len = std::get<0>(arr).size();static std::vector<i64> primes = { NTT_PRIMES[NTTis][0]... };fps_type res(len);for(std::size_t i = 0; i < len; i++) {std::vector<i64> x = { std::get<I>(arr)[i].value()... };res[i] = modint<M>(garner(x, primes, M));}return std::move(res);}template<i64 M2>static char mult_m2(std::vector<modint<M2>>& a, const std::vector<modint<M2>>& b) {for(int i = 0;i < a.size();i++) a[i] *= b[i];return 0;}template<std::size_t... I>static void mult_func(std::index_sequence<I...>, conv_type& a, const conv_type& b) {auto res = std::make_tuple(mult_m2<NTT_PRIMES[NTTis][0]>(std::get<I>(a), std::get<I>(b))...);}static conv_type dft(fps_type arr) {return std::make_tuple(dft_m2<NTT_PRIMES[NTTis][0], NTT_PRIMES[NTTis][1]>(arr)...);}static fps_type idft(conv_type arr) {return idft_func(std::make_index_sequence<tsize>(), std::move(arr));}static conv_type multiply(conv_type a, const conv_type& b) {mult_func(std::make_index_sequence<tsize>(), a, b);return a;}};/*template<typename _Size>inline _Size__lg(_Size __n){_Size __k;for (__k = 0; __n != 0; __n >>= 1)++__k;return __k - 1;}*/template<class T, class fps_multiply>struct FPS {std::vector<T> coef;static std::size_t bound_pow2(std::size_t sz) {return 1ll << (__lg(sz - 1) + 1);}FPS(const std::vector<T>& arr): coef(arr) {}size_t size() const { return coef.size(); }void bound_resize() {this->coef.resize(bound_pow2(this->size()));}T operator[](int i) const {if(i < coef.size()) return coef[i];else return T();}T & operator[](int i) { return coef[i]; }FPS pre(int n) const {std::vector<T> nex(n);for(int i = 0;i < coef.size() && i < n; i++) nex[i] = coef[i];return FPS(nex);}// F(0) must not be 0FPS inv() {FPS g = FPS(std::vector<T>{ T(1) / (*this)[0] });this->bound_resize();i64 n = this->size();for(int i = 1;i < n;i <<= 1) {g = g.pre(i << 1);auto gdft = fps_multiply::dft(g.coef);auto e = fps_multiply::idft(fps_multiply::multiply(fps_multiply::dft(this->pre(i << 1).coef), gdft));for(int j = 0;j < i;j++) {e[j] = T(0);e[j + i] = e[j + i] * T(-1);}auto f = fps_multiply::idft(fps_multiply::multiply(fps_multiply::dft(e), std::move(gdft)));for(int j = 0;j < i;j++) {f[j] = g[j];}g.coef = std::move(f);}return g.pre(n);}FPS diff() const {FPS res(vector<T>(this->size() - 1, T(0)));for(i64 i = 1;i < this->size();i++) res[i - 1] = coef[i] * T(i);return res;}FPS integral() const {FPS res(vector<T>(this->size() + 1, T(0)));for(i64 i = 0;i < this->size();i++) res[i + 1] = coef[i] / T(i + 1);return res;}// F(0) must be 0FPS log() {return (this->diff() * this->inv()).integral().pre(this->size());}FPS exp() const {FPS f(vector<T>{ T(1) });FPS g = *this;g.bound_resize();g[0] += T(1);for(i64 i = 1;i < size();i <<= 1 ) {f = (f * (g.pre(i << 1) - f.pre(i << 1).log())).pre(i << 1);}return f;}FPS operator+(const FPS& rhs) {i64 n = std::max(this->size(), rhs.size());std::vector<T> ans(n);for(int i = 0;i < n;i++) ans[i] = (*this)[i] + rhs[i];return FPS(ans);}FPS operator-(const FPS& rhs) {i64 n = std::max(this->size(), rhs.size());std::vector<T> ans(n);for(int i = 0;i < n;i++) ans[i] = (*this)[i] - rhs[i];return FPS(ans);}FPS operator*(const FPS& rhs) {i64 m = this->size() + rhs.size() - 1;i64 n = bound_pow2(m);auto res = fps_multiply::idft(fps_multiply::multiply(fps_multiply::dft(this->pre(n).coef), fps_multiply::dft(rhs.pre(n).coef)));res.resize(m);return res;}FPS& operator*=(const T& x) {for(int i = 0;i < this->size();i++) {(*this)[i] *= x;}return *this;}};int main() {i64 T;cin >> T;i64 a, b, c, d, e;cin >> a >> b >> c >> d >> e;i64 shift = std::max({std::abs(a), std::abs(b), std::abs(c)});using fp = modint<1000000007>;using fps = FPS<fp, fps_multiply_arb<1000000007, 0, 1, 2>>;//using fp = modint<998244353>;//using fps = FPS<fp, fps_ntt_multiply<998244353, 3>>;vector<fp> init(shift * 2 + 1);init[a + shift] += 1;init[b + shift] += 1;init[c + shift] += 1;init[-a + shift] += 1;init[-b + shift] += 1;init[-c + shift] += 1;fps f(init);fps ans(std::vector<fp>{ fp(1) });i64 t = T;while(t) {if(t & 1) {ans = ans * f;}t >>= 1;f = f * f;}fp res = 0;rep(i,d,e + 1) {if(i < ans.size()) {res += ans[i + shift * T];}}cout << res.a << endl;}