結果
問題 | No.1914 Directed by Two Sequences |
ユーザー | chineristAC |
提出日時 | 2021-11-05 20:14:43 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 10,299 bytes |
コンパイル時間 | 236 ms |
コンパイル使用メモリ | 82,432 KB |
実行使用メモリ | 171,668 KB |
最終ジャッジ日時 | 2024-05-09 12:30:04 |
合計ジャッジ時間 | 72,605 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | AC | 1,831 ms
154,016 KB |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
testcase_39 | WA | - |
ソースコード
""" 想定WA """ class SegmentTree: def __init__(self, init_val, segfunc, ide_ele): n = len(init_val) self.segfunc = segfunc self.ide_ele = ide_ele self.num = 1 << (n - 1).bit_length() self.tree = [ide_ele] * 2 * self.num self.size = n for i in range(n): self.tree[self.num + i] = init_val[i] for i in range(self.num - 1, 0, -1): self.tree[i] = self.segfunc(self.tree[2 * i], self.tree[2 * i + 1]) def update(self, k, x): k += self.num self.tree[k] = x while k > 1: k >>= 1 self.tree[k] = self.segfunc(self.tree[2*k], self.tree[2*k+1]) def query(self, l, r): if r==self.size: r = self.num res = self.ide_ele l += self.num r += self.num right = [] while l < r: if l & 1: res = self.segfunc(res, self.tree[l]) l += 1 if r & 1: right.append(self.tree[r-1]) l >>= 1 r >>= 1 for e in right[::-1]: res = self.segfunc(res,e) return res class _csr: def __init__(self, n, edges): self.start = [0] * (n + 1) self.elist = [0] * len(edges) for v, _ in edges: self.start[v + 1] += 1 for i in range(1, n + 1): self.start[i] += self.start[i - 1] counter = self.start.copy() for v, e in edges: self.elist[counter[v]] = e counter[v] += 1 class scc_graph: """It calculates the strongly connected components of directed graphs. """ def __init__(self, n): """It creates a directed graph with n vertices and 0 edges. Constraints ----------- > 0 <= n <= 10 ** 8 Complexity ---------- > O(n) """ self.n = n self.edges = [] def add_edge(self, from_, to): """It adds a directed edge from the vertex `from_` to the vertex `to`. Constraints ----------- > 0 <= from_ < n > 0 <= to < n Complexity ---------- > O(1) amortized """ # assert 0 <= from_ < self.n # assert 0 <= to < self.n self.edges.append((from_, to)) def _scc_ids(self): g = _csr(self.n, self.edges) now_ord = 0 group_num = 0 visited = [] low = [0] * self.n order = [-1] * self.n ids = [0] * self.n parent = [-1] * self.n stack = [] for i in range(self.n): if order[i] == -1: stack.append(i) stack.append(i) while stack: v = stack.pop() if order[v] == -1: low[v] = order[v] = now_ord now_ord += 1 visited.append(v) for i in range(g.start[v], g.start[v + 1]): to = g.elist[i] if order[to] == -1: stack.append(to) stack.append(to) parent[to] = v else: low[v] = min(low[v], order[to]) else: if low[v] == order[v]: while True: u = visited.pop() order[u] = self.n ids[u] = group_num if u == v: break group_num += 1 if parent[v] != -1: low[parent[v]] = min(low[parent[v]], low[v]) for i, x in enumerate(ids): ids[i] = group_num - 1 - x return group_num, ids def scc(self): """It returns the list of the "list of the vertices" that satisfies the following. > Each vertex is in exactly one "list of the vertices". > Each "list of the vertices" corresponds to the vertex set of a strongly connected component. The order of the vertices in the list is undefined. > The list of "list of the vertices" are sorted in topological order, i.e., for two vertices u, v in different strongly connected components, if there is a directed path from u to v, the list contains u appears earlier than the list contains v. Complexity ---------- > O(n + m), where m is the number of added edges. """ group_num, ids = self._scc_ids() groups = [[] for _ in range(group_num)] for i, x in enumerate(ids): groups[x].append(i) return groups def popcount(x): '''xの立っているビット数をカウントする関数 (xは64bit整数)''' # 2bitごとの組に分け、立っているビット数を2bitで表現する x = x - ((x >> 1) & 0x5555555555555555) # 4bit整数に 上位2bit + 下位2bit を計算した値を入れる x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333) x = (x + (x >> 4)) & 0x0f0f0f0f0f0f0f0f # 8bitごと x = x + (x >> 8) # 16bitごと x = x + (x >> 16) # 32bitごと x = x + (x >> 32) # 64bitごと = 全部の合計 return x & 0x0000007f popcnt = [popcount(i) for i in range(2**20)] def solve(N,A,B,M,E): A = [a-1 for a in A] B = [b-1 for b in B] G = scc_graph(N) edge = [[] for v in range(N)] for u,v in E: edge[u-1].append(v-1) edge[v-1].append(u-1) group = [-1 for v in range(N)] for v in range(N): mex = [False for i in range(len(edge[v])+1)] for nv in edge[v]: if nv < v and group[nv] < len(mex): mex[group[nv]] = True for i in range(len(mex)): if not mex[i]: group[v] = i break n = max(group) + 1 clique = [[] for g in range(n)] for v in range(N): clique[group[v]].append(v) def direct(i,j): if i < j: return A[i] < B[j] else: return B[i] < A[j] def hamilton_path(V): n = len(V) if n <= 1: return V A = hamilton_path(V[:n//2]) B = hamilton_path(V[n//2:]) res = [] bi = 0 for ai in range(len(A)): while bi<len(B) and direct(B[bi],A[ai]): res.append(B[bi]) bi += 1 res.append(A[ai]) res += B[bi:] return res idx = [-1 for v in range(N)] for g in range(n): clique[g] = hamilton_path(clique[g]) for i in range(len(clique[g])): idx[clique[g][i]] = i for u,v in zip(clique[g],clique[g][1:]): G.add_edge(u,v) memo_to = [N for v in range(N)] memo_from = [-1 for v in range(N)] ci = [i for i in range(n)] ci.sort(lambda g:len(clique[g])) idx_on_ci = [-1 for i in range(n)] for i in range(n): idx_on_ci[ci[i]] = i ban = [[] for v in range(N)] Vs = [] seg_to_large = SegmentTree([N]*2*N,min,N) seg_to_small = SegmentTree([N]*2*N,min,N) seg_from_large = SegmentTree([-1]*2*N,max,-1) seg_from_small = SegmentTree([-1]*2*N,max,-1) for i in range(n): target = ci[i] Vs += clique[target] Vs.sort() for nv in clique[target]: for v in edge[nv]: if idx_on_ci[group[v]] <= i: ban[v].append(nv) for v in Vs[::-1]: for nv in ban[v]: if v < nv: seg_to_large.update(B[nv],N) memo_to[v] = min(memo_to[v],seg_to_large.query(A[v],2*N)) for nv in ban[v]: if v < nv: seg_to_large.update(B[nv],idx[nv]) if group[v]==target: seg_to_large.update(B[v],idx[v]) for v in Vs: for nv in ban[v]: if nv < v: seg_to_small.update(A[nv],N) memo_to[v] = min(memo_to[v],seg_to_small.query(B[v],2*N)) for nv in ban[v]: if nv < v: seg_to_small.update(A[nv],idx[nv]) if group[v]==target: seg_to_small.update(A[v],idx[v]) for v in Vs[::-1]: for nv in ban[v]: if v < nv: seg_from_large.update(B[nv],-1) memo_from[v] = max(memo_from[v],seg_from_large.query(0,A[v])) for nv in ban[v]: if v < nv: seg_from_large.update(B[nv],idx[nv]) if group[v]==target: seg_from_large.update(B[v],idx[v]) for v in Vs: for nv in ban[v]: if nv < v: seg_from_small.update(A[nv],-1) memo_from[v] = max(memo_from[v],seg_from_small.query(0,B[v])) for nv in ban[v]: if nv < v: seg_from_small.update(A[nv],idx[nv]) if group[v]==target: seg_from_small.update(A[v],idx[v]) for v in Vs: if memo_to[v]!=N: nv = clique[target][memo_to[v]] G.add_edge(v,nv) memo_to[v] = N if memo_from[v]!=-1: pv = clique[target][memo_from[v]] G.add_edge(pv,v) memo_from[v] = -1 ban[v] = [] if group[v]==target: seg_to_large.update(B[v],N) seg_to_small.update(A[v],N) seg_from_large.update(B[v],-1) seg_from_small.update(A[v],-1) group_num,ids = G._scc_ids() res = [(i+1,i+2) for i in range(N-1)] + [(N,1)] print(len(res)) for u,v in res: print(u,v) import sys input = lambda :sys.stdin.buffer.readline() mi = lambda :map(int,input().split()) li = lambda :list(mi()) N,M = mi() A = li() B = li() E = [tuple(mi()) for i in range(M)] solve(N,A,B,M,E)