結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
nonamae
|
| 提出日時 | 2021-11-05 20:27:19 |
| 言語 | C (gcc 13.3.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 11,729 bytes |
| コンパイル時間 | 1,955 ms |
| コンパイル使用メモリ | 48,336 KB |
| 実行使用メモリ | 6,820 KB |
| 最終ジャッジ日時 | 2024-11-06 11:15:27 |
| 合計ジャッジ時間 | 1,743 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 WA * 6 |
ソースコード
#pragma region opt
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma endregion opt
#pragma region header
#define _GNU_SOURCE
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <string.h>
#include <time.h>
#pragma endregion header
#pragma region type
/* signed integer */
typedef int8_t i8;
typedef int16_t i16;
typedef int32_t i32;
typedef int64_t i64;
typedef __int128_t i128;
/* unsigned integer */
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
typedef __uint128_t u128;
/* floating point number */
typedef float f32;
typedef double f64;
typedef long double f80;
#pragma endregion type
#pragma region macro
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define SWAP(a, b) (((a) ^= (b)), ((b) ^= (a)), ((a) ^= (b)))
#define POPCNT32(a) __builtin_popcount((a))
#define POPCNT64(a) __builtin_popcountll((a))
#define CTZ32(a) __builtin_ctz((a))
#define CLZ32(a) __builtin_clz((a))
#define CTZ64(a) __builtin_ctzll((a))
#define CLZ64(a) __builtin_clzll((a))
#define HAS_SINGLE_BIT32(a) (__builtin_popcount((a)) == (1))
#define HAS_SINGLE_BIT64(a) (__builtin_popcountll((a)) == (1))
#define MSB32(a) ((31) - __builtin_clz((a)))
#define MSB64(a) ((63) - __builtin_clzll((a)))
#define BIT_WIDTH32(a) ((a) ? ((32) - __builtin_clz((a))) : (0))
#define BIT_WIDTH64(a) ((a) ? ((64) - __builtin_clzll((a))) : (0))
#define LSBit(a) ((a) & (-(a)))
#define CLSBit(a) ((a) & ((a) - (1)))
#define BIT_CEIL32(a) ((!(a)) ? (1) : ((POPCNT32(a)) == (1) ? ((1u) << ((31) - CLZ32((a)))) : ((1u) << ((32) - CLZ32(a)))))
#define BIT_CEIL64(a) ((!(a)) ? (1) : ((POPCNT64(a)) == (1) ? ((1ull) << ((63) - CLZ64((a)))) : ((1ull) << ((64) - CLZ64(a)))))
#define BIT_FLOOR32(a) ((!(a)) ? (0) : ((1u) << ((31) - CLZ32((a)))))
#define BIT_FLOOR64(a) ((!(a)) ? (0) : ((1ull) << ((63) - CLZ64((a)))))
#define _ROTL32(x, s) (((x) << ((s) % (32))) | (((x) >> ((32) - ((s) % (32))))))
#define _ROTR32(x, s) (((x) >> ((s) % (32))) | (((x) << ((32) - ((s) % (32))))))
#define ROTL32(x, s) (((s) == (0)) ? (x) : ((((i64)(s)) < (0)) ? (_ROTR32((x), -(s))) : (_ROTL32((x), (s)))))
#define ROTR32(x, s) (((s) == (0)) ? (x) : ((((i64)(s)) < (0)) ? (_ROTL32((x), -(s))) : (_ROTR32((x), (s)))))
#define _ROTL64(x, s) (((x) << ((s) % (64))) | (((x) >> ((64) - ((s) % (64))))))
#define _ROTR64(x, s) (((x) >> ((s) % (64))) | (((x) << ((64) - ((s) % (64))))))
#define ROTL64(x, s) (((s) == (0)) ? (x) : ((((i128)(s)) < (0)) ? (_ROTR64((x), -(s))) : (_ROTL64((x), (s)))))
#define ROTR64(x, s) (((s) == (0)) ? (x) : ((((i128)(s)) < (0)) ? (_ROTL64((x), -(s))) : (_ROTR64((x), (s)))))
#pragma endregion macro
#pragma region io
int read_int(void) {
// -2147483648 ~ 2147483647 (> 10 ^ 9)
int c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
i32 in_i32(void) {
// -2147483648 ~ 2147483647 (> 10 ^ 9)
i32 c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
u32 in_u32(void) {
// 0 ~ 4294967295 (> 10 ^ 9)
u32 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return x;
}
i64 in_i64(void) {
// -9223372036854775808 ~ 9223372036854775807 (> 10 ^ 18)
i64 c, x = 0, f = 1;
while (c = getchar_unlocked(), c < 48 || c > 57) if (c == 45) f = -f;
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return f * x;
}
u64 in_u64(void) {
// 0 ~ 18446744073709551615 (> 10 ^ 19)
u64 c, x = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
x = x * 10 + c - 48;
c = getchar_unlocked();
}
return x;
}
static inline void write_int_inner(int x) {
if (x >= 10) write_int_inner(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void write_int(int x) {
if (x < 0) {
putchar_unlocked('-');
x = -x;
}
write_int_inner(x);
}
static inline void out_i32_inner(i32 x) {
if (x >= 10) out_i32_inner(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void out_i32(i32 x) {
if (x < 0) {
putchar_unlocked('-');
x = -x;
}
out_i32_inner(x);
}
void out_u32(u32 x) {
if (x >= 10) out_u32(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
static inline void out_i64_inner(i64 x) {
if (x >= 10) out_i64_inner(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void out_i64(i64 x) {
if (x < 0) {
putchar_unlocked('-');
x = -x;
}
out_i64_inner(x);
}
void out_u64(u64 x) {
if (x >= 10) out_u64(x / 10);
putchar_unlocked(x - x / 10 * 10 + 48);
}
void NL(void) { putchar_unlocked('\n'); }
void SP(void) { putchar_unlocked(' '); }
void write_int_array(int *a, int a_len) {
for (int i = 0; i < a_len; i++) {
if (i) SP();
write_int(a[i]);
}
NL();
}
void out_i32_array(i32 *a, int a_len) {
for (int i = 0; i < a_len; i++) {
if (i) SP();
out_i32(a[i]);
}
NL();
}
void out_u32_array(u32 *a, int a_len) {
for (int i = 0; i < a_len; i++) {
if (i) SP();
out_u32(a[i]);
}
NL();
}
void out_i64_array(i64 *a, int a_len) {
for (int i = 0; i < a_len; i++) {
if (i) SP();
out_i64(a[i]);
}
NL();
}
void out_u64_array(u64 *a, int a_len) {
for (int i = 0; i < a_len; i++) {
if (i) SP();
out_u64(a[i]);
}
NL();
}
#pragma endregion io
#pragma region m32
typedef uint32_t m32;
m32 _one_m32(u32 mod) { return (u32)-1u % mod + 1; }
m32 _r2_m32(u32 mod) { return (u64)(i64)-1 % mod + 1; }
m32 _inv_m32(u32 mod) {
u32 inv = mod;
for (int i = 0; i < 4; ++i) inv *= 2 - inv * mod;
return inv;
/**
u32 u = 1, v = 0, x = 1u << 31;
for (int i = 0; i < 32; i++) {
if (u & 1) u = (u + mod) >> 1, v = (v >> 1) + x;
else u >>= 1, v >>= 1;
}
return -v;
*/
}
m32 _reduce_m32(u64 a, m32 inv, u32 mod) {
u32 y = (u32)(a >> 32) - (u32)(((u64)((u32)a * inv) * mod) >> 32);
return (i32)y < 0 ? y + mod : y;
}
m32 to_m32(u32 a, m32 r2, m32 inv, u32 mod) { return _reduce_m32((u64)a * r2, inv, mod); }
u32 from_m32(m32 A, m32 inv, u32 mod) { return _reduce_m32(A, inv, mod); }
m32 add_m32(m32 A, m32 B, u32 mod) {
A += B - mod;
if ((i32)A < 0) A += mod;
return A;
}
m32 sub_m32(m32 A, m32 B, u32 mod) {
if ((i32)(A -= B) < 0) A += 2 * mod;
return A;
}
m32 min_m32(m32 A, u32 mod) { return sub_m32(0u, A, mod); }
m32 mul_m32(m32 A, m32 B, m32 inv, u32 mod) { return _reduce_m32((u64)A * B, inv, mod); }
m32 pow_m32(m32 A, i32 n, m32 inv, u32 mod) {
m32 ret = _one_m32(mod);
while (n > 0) {
if (n & 1) ret = mul_m32(ret, A, inv, mod);
A = mul_m32(A, A, inv, mod);
n >>= 1;
}
return ret;
}
m32 inv_m32(m32 A, m32 inv, u32 mod) { return pow_m32(A, (i32)mod - 2, inv, mod); }
m32 div_m32(m32 A, m32 B, m32 inv, u32 mod) {
/* assert(is_prime(mod)); */
return mul_m32(A, inv_m32(B, inv, mod), inv, mod);
}
m32 in_m32(m32 r2, m32 inv, u32 mod) {
u32 c, a = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
a = a * 10 + c - 48;
c = getchar_unlocked();
}
return to_m32(a, r2, inv, mod);
}
void out_m32(m32 A, m32 inv, u32 mod) {
u32 a = from_m32(A, inv, mod);
out_u32(a);
}
#pragma endregion m32
#pragma region m64
typedef uint64_t m64;
m64 _one_m64(u64 mod) { return (u64)-1ull % mod + 1; }
m64 _r2_m64(u64 mod) { return (u128)(i128)-1 % mod + 1; }
m64 _inv_m64(u64 mod) {
m64 inv = mod;
for (int i = 0; i < 5; i++) inv *= 2 - inv * mod;
return inv;
}
m64 _reduce_m64(u128 a, m64 inv, u64 mod) {
u64 y = (u64)(a >> 64) - (u64)(((u128)((u64)a * inv) * mod) >> 64);
return (i64)y < 0 ? y + mod : y;
}
m64 to_m64(u64 a, m64 r2, m64 inv, u64 mod) { return _reduce_m64((u128)a * r2, inv, mod); }
u64 from_m64(m64 A, m64 inv, u64 mod) { return _reduce_m64(A, inv, mod); }
m64 add_m64(m64 A, m64 B, u64 mod) {
A += B - mod;
if ((i64)A < 0) A += mod;
return A;
}
m64 sub_m64(m64 A, m64 B, u64 mod) {
if ((i64)(A -= B) < 0) A += 2 * mod;
return A;
}
m64 min_m64(m64 A, u64 mod) { return sub_m64(0ull, A, mod); }
m64 mul_m64(m64 A, m64 B, m64 inv, u64 mod) { return _reduce_m64((u128)A * B, inv, mod); }
m64 pow_m64(m64 A, i64 n, m64 inv, u64 mod) {
m64 ret = _one_m64(mod);
while (n > 0) {
if (n & 1) ret = mul_m64(ret, A, inv, mod);
A = mul_m64(A, A, inv, mod);
n >>= 1;
}
return ret;
}
m64 inv_m64(m64 A, m64 inv, u64 mod) { return pow_m64(A, (i64)mod - 2, inv, mod); }
m64 div_m64(m64 A, m64 B, m64 inv, u64 mod) {
/* assert(is_prime(mod)); */
return mul_m64(A, inv_m64(B, inv, mod), inv, mod);
}
m64 in_m64(m64 r2, m64 inv, u64 mod) {
u64 c, a = 0;
while (c = getchar_unlocked(), c < 48 || c > 57);
while (47 < c && c < 58) {
a = a * 10 + c - 48;
c = getchar_unlocked();
}
return to_m64(a, r2, inv, mod);
}
void out_m64(m64 A, m64 inv, u64 mod) {
u64 a = from_m64(A, inv, mod);
out_u64(a);
}
#pragma endregion m64
#pragma region is_prime
u64 bin_gcd_u64(u64 a, u64 b) {
if (!a || !b) return a | b;
u64 shift = __builtin_ctzll(a | b);
a >>= __builtin_ctzll(a);
do {
b >>= __builtin_ctzll(b);
if (a > b) SWAP(a, b);
b -= a;
} while (b);
return a << shift;
}
int jacobi(i64 a, u64 n){
u64 t;
int j = 1;
while(a) {
if (a < 0) {
a = -a;
if ((n & 3) == 3) j = -j;
}
int ba = __builtin_ctzll(a);
a >>= ba;
if (((n & 7) == 3|| (n & 7) == 5) && (ba & 1)) j = -j;
if ((a & n & 3) == 3) j = -j;
t = a;
a = n;
n = t;
a %= n;
if (a > n / 2) a -= n;
}
return n == 1 ? j : 0;
}
bool is_prime(u64 n) {
// Baillie-PSW Primality test
// https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test
if (n <= 6ul) return n == 2ul || n == 3ul || n == 5ul;
if (!(n & 1)) return false;
if (bin_gcd_u64(15, n) != 1) return false;
u64 mod = n;
m64 r2 = _r2_m64(mod);
m64 inv = _inv_m64(mod);
m64 one = _one_m64(mod);
m64 two = to_m64(2ull, r2, inv, mod);
m64 rev = to_m64(n - 1, r2, inv, mod);
m64 fermat = pow_m64(two, (n - 1) >> 1, inv, mod);
if (fermat != one || fermat != rev) return false;
i64 D = 5;
for (int i = 0; jacobi(D, n) != -1 && i < 64; i++) {
if (i == 32) {
u32 k = round(sqrtl(n));
if (k * k == n) return false;
}
if (i & 1) D -= 2;
else D += 2;
D = -D;
}
u64 Q = to_m64((D < 0 ? (1 - D) / 4 : (D - 1) / 4), r2, inv, mod);
m64 u, v, Qn, d;
u64 k = (n + 1) << CLZ64(n + 1);
u = one;
v = one;
Qn = Q;
d = to_m64(D, r2, inv, mod);
for (k <<= 1; k; k <<= 1) {
u = mul_m64(u, v, inv, mod);
v = sub_m64(mul_m64(v, v, inv, mod), add_m64(Qn, Qn, mod), mod);
Qn = mul_m64(Qn, Qn, inv, mod);
if (k >> 63) {
u64 uu = add_m64(u, v, mod);
if (uu & 1) uu += n;
uu >>= 1;
v = add_m64(mul_m64(D, u, inv, mod), v, mod);
if (v & 1) v += n;
v >>= 1;
u = uu;
Qn = mul_m64(Qn, Q, inv, mod);
}
}
if (u == 0 || v == 0) return true;
u64 x = (n + 1) & ~n;
for (x >>= 1; x; x >>= 1) {
u = mul_m64(u, v, inv, mod);
v = sub_m64(mul_m64(v, v, inv, mod), add_m64(Qn, Qn, mod), mod);
if (v == 0) return true;
Qn = mul_m64(Qn, Qn, inv, mod);
}
return false;
}
#pragma endregion is_prime
void Main(void) {
int n = read_int();
while (n--) {
u64 x = in_u64();
out_u64(x);
SP();
write_int(is_prime(x));
NL();
}
}
int main(void) {
Main();
return 0;
}
nonamae