結果
問題 | No.1608 Yet Another Ants Problem |
ユーザー |
|
提出日時 | 2021-11-05 20:54:24 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 492 ms / 2,000 ms |
コード長 | 7,649 bytes |
コンパイル時間 | 13,713 ms |
コンパイル使用メモリ | 382,220 KB |
実行使用メモリ | 72,576 KB |
最終ジャッジ日時 | 2024-11-06 11:39:58 |
合計ジャッジ時間 | 21,637 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 32 |
ソースコード
#[allow(unused_imports)]use std::cmp::*;#[allow(unused_imports)]use std::collections::*;use std::io::{Write, BufWriter};// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// Depends on MInt.rsfn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {let mut fac = vec![MInt::new(1); w];let mut invfac = vec![0.into(); w];for i in 1..w {fac[i] = fac[i - 1] * i as i64;}invfac[w - 1] = fac[w - 1].inv();for i in (0..w - 1).rev() {invfac[i] = invfac[i + 1] * (i as i64 + 1);}(fac, invfac)}trait Bisect<T> {fn lower_bound(&self, val: &T) -> usize;fn upper_bound(&self, val: &T) -> usize;}impl<T: Ord> Bisect<T> for [T] {fn lower_bound(&self, val: &T) -> usize {let mut pass = self.len() + 1;let mut fail = 0;while pass - fail > 1 {let mid = (pass + fail) / 2;if &self[mid - 1] >= val {pass = mid;} else {fail = mid;}}pass - 1}fn upper_bound(&self, val: &T) -> usize {let mut pass = self.len() + 1;let mut fail = 0;while pass - fail > 1 {let mid = (pass + fail) / 2;if &self[mid - 1] > val {pass = mid;} else {fail = mid;}}pass - 1}}// https://yukicoder.me/problems/no/1608 (3.5)// 左に i 匹、右に n - i 匹落ちる場合: (左の i 匹目の落ちる時刻) >= (右の n - i 匹目の落ちる時刻) であればよい。// \sum {j < k, A[k] >= L - A[j] } C(k - j - 1, i - j - 1) + [A[i] <= L - A[i + 1]]// この形の和は (i, j を固定すれば) 累積和で加速できる。O(N^2)。fn main() {let out = std::io::stdout();let mut out = BufWriter::new(out.lock());macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););}input! {n: usize, l: i64,a: [i64; n],}let (fac, invfac) = fact_init(n + 1);let mut acc = vec![vec![MInt::new(0); n + 1]; n];for i in 0..n {for k in i..n {acc[i][k + 1] = acc[i][k] + fac[k] * invfac[i] * invfac[k - i];}}let mut ans = vec![MInt::new(0); n];for i in 0..n {let mut left = MInt::new(0);let mut right = MInt::new(0);for j in 0..i {let kmin = max(j + 1, a.lower_bound(&(l - a[j])));left += acc[i - j - 1][n - j - 1] - acc[i - j - 1][kmin - j - 1];right += acc[i - j - 1][kmin - j - 1];}// <- <- ... <- -> ... -> ->if i > 0 && a[i - 1] >= l - a[i] {left += 1;} else {right += 1;}if i > 0 {ans[i - 1] += left;}ans[i] += right;eprintln!("{} => {} {}", i, left, right);}ans[n - 1] += 1; // all <-for i in 0..n {puts!("{}\n", ans[i]);}}