結果

問題 No.1731 Product of Subsequence
ユーザー LayCurse
提出日時 2021-11-05 21:26:05
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 826 ms / 2,000 ms
コード長 8,793 bytes
コンパイル時間 3,093 ms
コンパイル使用メモリ 228,564 KB
最終ジャッジ日時 2025-01-25 11:56:54
ジャッジサーバーID
(参考情報)
judge2 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("Ofast")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("inline")
#include<bits/stdc++.h>
using namespace std;
#define MD (1000000007U)
template<class T> struct cLtraits_identity{
using type = T;
}
;
template<class T> using cLtraits_try_make_signed =
typename conditional<
is_integral<T>::value,
make_signed<T>,
cLtraits_identity<T>
>::type;
struct Modint{
unsigned val;
Modint(){
val=0;
}
Modint(int a){
val = ord(a);
}
Modint(unsigned a){
val = ord(a);
}
Modint(long long a){
val = ord(a);
}
Modint(unsigned long long a){
val = ord(a);
}
inline unsigned ord(unsigned a){
return a%MD;
}
inline unsigned ord(int a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned ord(unsigned long long a){
return a%MD;
}
inline unsigned ord(long long a){
a %= (int)MD;
if(a < 0){
a += MD;
}
return a;
}
inline unsigned get(){
return val;
}
inline Modint &operator++(){
val++;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator--(){
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return *this;
}
inline Modint operator++(int a){
Modint res(*this);
val++;
if(val >= MD){
val -= MD;
}
return res;
}
inline Modint operator--(int a){
Modint res(*this);
if(val == 0){
val = MD - 1;
}
else{
--val;
}
return res;
}
inline Modint &operator+=(Modint a){
val += a.val;
if(val >= MD){
val -= MD;
}
return *this;
}
inline Modint &operator-=(Modint a){
if(val < a.val){
val = val + MD - a.val;
}
else{
val -= a.val;
}
return *this;
}
inline Modint &operator*=(Modint a){
val = ((unsigned long long)val*a.val)%MD;
return *this;
}
inline Modint &operator/=(Modint a){
return *this *= a.inverse();
}
inline Modint operator+(Modint a){
return Modint(*this)+=a;
}
inline Modint operator-(Modint a){
return Modint(*this)-=a;
}
inline Modint operator*(Modint a){
return Modint(*this)*=a;
}
inline Modint operator/(Modint a){
return Modint(*this)/=a;
}
inline Modint operator+(int a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(int a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(int a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(int a){
return Modint(*this)/=Modint(a);
}
inline Modint operator+(long long a){
return Modint(*this)+=Modint(a);
}
inline Modint operator-(long long a){
return Modint(*this)-=Modint(a);
}
inline Modint operator*(long long a){
return Modint(*this)*=Modint(a);
}
inline Modint operator/(long long a){
return Modint(*this)/=Modint(a);
}
inline Modint operator-(void){
Modint res;
if(val){
res.val=MD-val;
}
else{
res.val=0;
}
return res;
}
inline operator bool(void){
return val!=0;
}
inline operator int(void){
return get();
}
inline operator long long(void){
return get();
}
inline Modint inverse(){
int a = val;
int b = MD;
int u = 1;
int v = 0;
int t;
Modint res;
while(b){
t = a / b;
a -= t * b;
swap(a, b);
u -= t * v;
swap(u, v);
}
if(u < 0){
u += MD;
}
res.val = u;
return res;
}
inline Modint pw(unsigned long long b){
Modint a(*this);
Modint res;
res.val = 1;
while(b){
if(b&1){
res *= a;
}
b >>= 1;
a *= a;
}
return res;
}
inline bool operator==(int a){
return ord(a)==val;
}
inline bool operator!=(int a){
return ord(a)!=val;
}
}
;
inline Modint operator+(int a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(int a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(int a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(int a, Modint b){
return Modint(a)/=b;
}
inline Modint operator+(long long a, Modint b){
return Modint(a)+=b;
}
inline Modint operator-(long long a, Modint b){
return Modint(a)-=b;
}
inline Modint operator*(long long a, Modint b){
return Modint(a)*=b;
}
inline Modint operator/(long long a, Modint b){
return Modint(a)/=b;
}
inline int my_getchar_unlocked(){
static char buf[1048576];
static int s = 1048576;
static int e = 1048576;
if(s == e && e == 1048576){
e = fread_unlocked(buf, 1, 1048576, stdin);
s = 0;
}
if(s == e){
return EOF;
}
return buf[s++];
}
inline void rd(int &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
inline void rd(long long &x){
int k;
int m=0;
x=0;
for(;;){
k = my_getchar_unlocked();
if(k=='-'){
m=1;
break;
}
if('0'<=k&&k<='9'){
x=k-'0';
break;
}
}
for(;;){
k = my_getchar_unlocked();
if(k<'0'||k>'9'){
break;
}
x=x*10+k-'0';
}
if(m){
x=-x;
}
}
struct MY_WRITER{
char buf[1048576];
int s;
int e;
MY_WRITER(){
s = 0;
e = 1048576;
}
~MY_WRITER(){
if(s){
fwrite_unlocked(buf, 1, s, stdout);
}
}
}
;
MY_WRITER MY_WRITER_VAR;
void my_putchar_unlocked(int a){
if(MY_WRITER_VAR.s == MY_WRITER_VAR.e){
fwrite_unlocked(MY_WRITER_VAR.buf, 1, MY_WRITER_VAR.s, stdout);
MY_WRITER_VAR.s = 0;
}
MY_WRITER_VAR.buf[MY_WRITER_VAR.s++] = a;
}
inline void wt_L(char a){
my_putchar_unlocked(a);
}
inline void wt_L(int x){
int s=0;
int m=0;
char f[10];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(unsigned x){
int s=0;
char f[10];
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(long long x){
int s=0;
int m=0;
char f[20];
if(x<0){
m=1;
x=-x;
}
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
if(m){
my_putchar_unlocked('-');
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(unsigned long long x){
int s=0;
char f[21];
while(x){
f[s++]=x%10;
x/=10;
}
if(!s){
f[s++]=0;
}
while(s--){
my_putchar_unlocked(f[s]+'0');
}
}
inline void wt_L(Modint x){
int i;
i = (int)x;
wt_L(i);
}
int WRITER_DOUBLE_DIGIT = 15;
inline int writerDigit_double(){
return WRITER_DOUBLE_DIGIT;
}
inline void writerDigit_double(int d){
WRITER_DOUBLE_DIGIT = d;
}
inline void wt_L(double x){
const int d = WRITER_DOUBLE_DIGIT;
int k;
int r;
double v;
if(x!=x || (x==x+1 && x==2*x)){
my_putchar_unlocked('E');
my_putchar_unlocked('r');
my_putchar_unlocked('r');
return;
}
if(x < 0){
my_putchar_unlocked('-');
x = -x;
}
x += 0.5 * pow(0.1, d);
r = 0;
v = 1;
while(x >= 10*v){
v *= 10;
r++;
}
while(r >= 0){
r--;
k = floor(x / v);
if(k >= 10){
k = 9;
}
if(k <= -1){
k = 0;
}
x -= k * v;
v *= 0.1;
my_putchar_unlocked(k + '0');
}
if(d > 0){
my_putchar_unlocked('.');
v = 1;
for(r=(0);r<(d);r++){
v *= 0.1;
k = floor(x / v);
if(k >= 10){
k = 9;
}
if(k <= -1){
k = 0;
}
x -= k * v;
my_putchar_unlocked(k + '0');
}
}
}
inline void wt_L(const char c[]){
int i=0;
for(i=0;c[i]!='\0';i++){
my_putchar_unlocked(c[i]);
}
}
inline void wt_L(string &x){
int i=0;
for(i=0;x[i]!='\0';i++){
my_putchar_unlocked(x[i]);
}
}
template<class T, class U> inline T GCD_L(T a, U b){
T r;
while(b){
r=a;
a=b;
b=r%a;
}
return a;
}
int main(){
int i;
int N;
rd(N);
int K;
rd(K);
long long A[N];
{
int Lj4PdHRW;
for(Lj4PdHRW=(0);Lj4PdHRW<(N);Lj4PdHRW++){
rd(A[Lj4PdHRW]);
}
}
map<long long,Modint> dp;
map<long long,Modint> nx;
dp[K] = 1;
for(i=(0);i<(N);i++){
nx = dp;
for(auto [a,t] : dp){
nx[a/GCD_L(a, A[i])] += t;
}
dp = nx;
}
if(K==1){
dp[1]--;
}
wt_L(dp[1]);
wt_L('\n');
return 0;
}
// cLay version 20211024-1
// --- original code ---
// int @N, @K; ll @A[N];
// map<ll,Modint> dp, nx;
// dp[K] = 1;
// rep(i,N){
// nx = dp;
// for(auto [a,t] : dp) nx[a/gcd(a,A[i])] += t;
// dp = nx;
// }
// if(K==1) dp[1]--;
// wt(dp[1]);
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0