結果

問題 No.1731 Product of Subsequence
ユーザー tokusakurai
提出日時 2021-11-05 21:44:29
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 244 ms / 2,000 ms
コード長 6,468 bytes
コンパイル時間 2,653 ms
コンパイル使用メモリ 208,308 KB
最終ジャッジ日時 2025-01-25 12:07:21
ジャッジサーバーID
(参考情報)
judge1 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 4
other AC * 31
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < n; i++)
#define rep2(i, x, n) for (int i = x; i <= n; i++)
#define rep3(i, x, n) for (int i = x; i >= n; i--)
#define each(e, v) for (auto &e : v)
#define pb push_back
#define eb emplace_back
#define all(x) x.begin(), x.end()
#define rall(x) x.rbegin(), x.rend()
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
const int MOD = 1000000007;
// const int MOD = 998244353;
template <typename T>
vector<T> divisors(const T &n) {
vector<T> ret;
for (T i = 1; i * i <= n; i++) {
if (n % i == 0) {
ret.push_back(i);
if (i * i != n) ret.push_back(n / i);
}
}
sort(begin(ret), end(ret));
return ret;
}
template <typename T>
vector<pair<T, int>> prime_factor(T n) {
vector<pair<T, int>> ret;
for (T i = 2; i * i <= n; i++) {
int cnt = 0;
while (n % i == 0) cnt++, n /= i;
if (cnt > 0) ret.emplace_back(i, cnt);
}
if (n > 1) ret.emplace_back(n, 1);
return ret;
}
template <typename T>
bool is_prime(const T &n) {
if (n == 1) return false;
for (T i = 2; i * i <= n; i++) {
if (n % i == 0) return false;
}
return true;
}
// 1,2,...,nk
template <typename T>
T coprime(T n, T k) {
vector<pair<T, int>> ps = prime_factor(k);
int m = ps.size();
T ret = 0;
for (int i = 0; i < (1 << m); i++) {
T prd = 1;
for (int j = 0; j < m; j++) {
if ((i >> j) & 1) prd *= ps[j].first;
}
ret += (__builtin_parity(i) ? -1 : 1) * (n / prd);
}
return ret;
}
vector<bool> Eratosthenes(const int &n) {
vector<bool> ret(n + 1, true);
if (n >= 0) ret[0] = false;
if (n >= 1) ret[1] = false;
for (int i = 2; i * i <= n; i++) {
if (!ret[i]) continue;
for (int j = i + i; j <= n; j += i) ret[j] = false;
}
return ret;
}
vector<int> Eratosthenes2(const int &n) {
vector<int> ret(n + 1);
iota(begin(ret), end(ret), 0);
if (n >= 0) ret[0] = -1;
if (n >= 1) ret[1] = -1;
for (int i = 2; i * i <= n; i++) {
if (ret[i] < i) continue;
for (int j = i + i; j <= n; j += i) ret[j] = min(ret[j], i);
}
return ret;
}
template <int mod>
struct Mod_Int {
int x;
Mod_Int() : x(0) {}
Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
static int get_mod() { return mod; }
Mod_Int &operator+=(const Mod_Int &p) {
if ((x += p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator-=(const Mod_Int &p) {
if ((x += mod - p.x) >= mod) x -= mod;
return *this;
}
Mod_Int &operator*=(const Mod_Int &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
Mod_Int &operator/=(const Mod_Int &p) {
*this *= p.inverse();
return *this;
}
Mod_Int &operator++() { return *this += Mod_Int(1); }
Mod_Int operator++(int) {
Mod_Int tmp = *this;
++*this;
return tmp;
}
Mod_Int &operator--() { return *this -= Mod_Int(1); }
Mod_Int operator--(int) {
Mod_Int tmp = *this;
--*this;
return tmp;
}
Mod_Int operator-() const { return Mod_Int(-x); }
Mod_Int operator+(const Mod_Int &p) const { return Mod_Int(*this) += p; }
Mod_Int operator-(const Mod_Int &p) const { return Mod_Int(*this) -= p; }
Mod_Int operator*(const Mod_Int &p) const { return Mod_Int(*this) *= p; }
Mod_Int operator/(const Mod_Int &p) const { return Mod_Int(*this) /= p; }
bool operator==(const Mod_Int &p) const { return x == p.x; }
bool operator!=(const Mod_Int &p) const { return x != p.x; }
Mod_Int inverse() const {
assert(*this != Mod_Int(0));
return pow(mod - 2);
}
Mod_Int pow(long long k) const {
Mod_Int now = *this, ret = 1;
for (; k > 0; k >>= 1, now *= now) {
if (k & 1) ret *= now;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Mod_Int &p) { return os << p.x; }
friend istream &operator>>(istream &is, Mod_Int &p) {
long long a;
is >> a;
p = Mod_Int<mod>(a);
return is;
}
};
using mint = Mod_Int<MOD>;
int main() {
ll N, K;
cin >> N >> K;
vector<ll> A(N);
rep(i, N) {
cin >> A[i];
A[i] = gcd(A[i], K);
}
vector<ll> ds = divisors(K);
int M = sz(ds);
vector<mint> dp(M, 0), ndp(M, 0);
dp[0] = 1;
rep(i, N) {
fill(all(ndp), mint(0));
rep(j, M) {
if (dp[j] == 0) continue;
int nj = lb(ds, gcd(ds[j] * A[i], K));
ndp[nj] += dp[j];
ndp[j] += dp[j];
}
swap(dp, ndp);
}
mint ans = dp.back();
if (K == 1) ans--;
cout << ans << '\n';
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0