結果
問題 | No.1731 Product of Subsequence |
ユーザー | ecottea |
提出日時 | 2021-11-05 22:16:11 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
MLE
|
実行時間 | - |
コード長 | 18,102 bytes |
コンパイル時間 | 5,058 ms |
コンパイル使用メモリ | 255,556 KB |
実行使用メモリ | 1,582,592 KB |
最終ジャッジ日時 | 2024-11-06 13:09:47 |
合計ジャッジ時間 | 12,390 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | MLE | - |
testcase_01 | -- | - |
testcase_02 | -- | - |
testcase_03 | -- | - |
testcase_04 | -- | - |
testcase_05 | -- | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
testcase_09 | -- | - |
testcase_10 | -- | - |
testcase_11 | -- | - |
testcase_12 | -- | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
ソースコード
#ifndef HIDDEN_IN_VISUAL_STUDIO // 折りたたみ用 // 警告の抑制 #define _CRT_SECURE_NO_WARNINGS // 使えるライブラリの読み込み #include <bits/stdc++.h> using namespace std; // 型名の短縮 using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9) using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>; using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>; using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>; using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>; template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>; using Graph = vvi; // 定数の定義 const double PI = 3.14159265359; const double DEG = PI / 180.; // θ [deg] = θ * DEG [rad] const vi dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左) const vi dy4 = { 0, 1, 0, -1 }; const vi dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍 const vi dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 }; const int INF = 1001001001; const ll INFL = 4004004004004004004LL; const double EPS = 1e-10; // 許容誤差に応じて調整 // 入出力高速化 struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(15); } } fastIOtmp; // 汎用マクロの定義 #define all(a) (a).begin(), (a).end() #define sz(x) ((int)(x).size()) #define distance (int)distance #define Yes(b) {cout << ((b) ? "Yes" : "No") << endl;} #define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順 #define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順 #define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順 #define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能) #define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能) #define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順) #define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順) #define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順) #define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順) #define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod #define uniq(a) {sort(all(a)); a.erase(unique(all(a)), a.end());} // 重複削除 // 汎用関数の定義 template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; } template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す) template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す) // 入出力用の >>, << のオーバーロード template <class T, class U> inline istream& operator>> (istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T, class U> inline ostream& operator<< (ostream& os, const pair<T, U>& p) { os << "(" << p.first << "," << p.second << ")"; return os; } template <class T, class U, class V> inline istream& operator>> (istream& is, tuple<T, U, V>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; } template <class T, class U, class V> inline ostream& operator<< (ostream& os, const tuple<T, U, V>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; } template <class T, class U, class V, class W> inline istream& operator>> (istream& is, tuple<T, U, V, W>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; } template <class T, class U, class V, class W> inline ostream& operator<< (ostream& os, const tuple<T, U, V, W>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; } template <class T> inline istream& operator>> (istream& is, vector<T>& v) { repea(x, v) is >> x; return is; } template <class T> inline ostream& operator<< (ostream& os, const vector<T>& v) { repe(x, v) os << x << " "; return os; } template <class T> inline ostream& operator<< (ostream& os, const set<T>& s) { repe(x, s) os << x << " "; return os; } template <class T> inline ostream& operator<< (ostream& os, const unordered_set<T>& s) { repe(x, s) os << x << " "; return os; } template <class T, class U> inline ostream& operator<< (ostream& os, const map<T, U>& m) { repe(p, m) os << p << " "; return os; } template <class T, class U> inline ostream& operator<< (ostream& os, const unordered_map<T, U>& m) { repe(p, m) os << p << " "; return os; } template <class T> inline ostream& operator<< (ostream& os, stack<T> s) { while (!s.empty()) { os << s.top() << " "; s.pop(); } return os; } template <class T> inline ostream& operator<< (ostream& os, queue<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop(); } return os; } template <class T> inline ostream& operator<< (ostream& os, deque<T> q) { while (!q.empty()) { os << q.front() << " "; q.pop_front(); } return os; } template <class T> inline ostream& operator<< (ostream& os, priority_queue<T> q) { while (!q.empty()) { os << q.top() << " "; q.pop(); } return os; } // 手元環境(Visual Studio) #ifdef _MSC_VER #define popcount (int)__popcnt // 全ビット中の 1 の個数 #define popcountll (int)__popcnt64 inline int lsb(unsigned int n) { unsigned long i; _BitScanForward(&i, n); return i; } // 最下位ビットの位置(0-indexed) inline int lsbll(unsigned long long n) { unsigned long i; _BitScanForward64(&i, n); return i; } inline int msb(unsigned int n) { unsigned long i; _BitScanReverse(&i, n); return i; } // 最上位ビットの位置(0-indexed) inline int msbll(unsigned long long n) { unsigned long i; _BitScanReverse64(&i, n); return i; } template <class T> T gcd(T a, T b) { return b ? gcd(b, a % b) : a; } #define dump(x) cout << "\033[1;36m" << (x) << "\033[0m" << endl; #define dumps(x) cout << "\033[1;36m" << (x) << "\033[0m "; #define dumpel(a) { int i = 0; cout << "\033[1;36m"; repe(x, a) {cout << i++ << ": " << x << endl;} cout << "\033[0m"; } #define input_from_file(f) ifstream isTMP(f); cin.rdbuf(isTMP.rdbuf()); #define output_to_file(f) ofstream osTMP(f); cout.rdbuf(osTMP.rdbuf()); // 提出用(gcc) #else #define popcount (int)__builtin_popcount #define popcountll (int)__builtin_popcountll #define lsb __builtin_ctz #define lsbll __builtin_ctzll #define msb(n) (31 - __builtin_clz(n)) #define msbll(n) (63 - __builtin_clzll(n)) #define gcd __gcd #define dump(x) #define dumps(x) #define dumpel(v) #define input_from_file(f) #define output_to_file(f) #endif #endif // 折りたたみ用 //-----------------AtCoder 専用----------------- #include <atcoder/all> using namespace atcoder; using mint = modint1000000007; //using mint = modint998244353; //using mint = modint; // mint::set_mod(m); template <class S, S(*op)(S, S), S(*e)()>ostream& operator<<(ostream& os, segtree<S, op, e> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; } template <class S, S(*op)(S, S), S(*e)(), class F, S(*mp)(F, S), F(*cp)(F, F), F(*id)()>ostream& operator<<(ostream& os, lazy_segtree<S, op, e, F, mp, cp, id> seg) { int n = seg.max_right(0, [](S x) {return true; }); rep(i, n) os << seg.get(i) << " "; return os; } istream& operator>> (istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; } ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; } using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; //---------------------------------------------- //【素因数分解/試し割り法】O(√n) /* * n を素因数分解した結果を pps に格納する. * * pps[p] = d : n に素因数 p が d 個含まれていることを表す. */ void factor_integer(ll n, map<ll, int>& pps) { pps.clear(); for (ll i = 2; i * i <= n; i++) { int d = 0; while (n % i == 0) { d++; n /= i; } if (d > 0) pps[i] = d; } if (n > 1) pps[n] = 1; } //【有限体 F_p 上の計算(64 bit)】 /* * 有限体 F_p 上ので様々な計算を行う. * * 制約 : p は素数,コンパイラは gcc */ //using a__int128 = ll; // デバッグ用 struct mll { __int128 v; static __int128 MOD; // コンストラクタ mll() : v(0) {}; mll(const mll& a) = default; mll(const int& a) : v(safe_mod(a)) {}; mll(const ll& a) : v(safe_mod(a)) {}; // 代入 mll& operator=(const mll& a) { v = a.v; return *this; } mll& operator=(const int& a) { v = safe_mod(a); return *this; } mll& operator=(const ll& a) { v = safe_mod(a); return *this; } // 入出力 friend istream& operator>> (istream& is, mll& x) { ll tmp; is >> tmp; x.v = safe_mod(tmp); return is; } friend ostream& operator<< (ostream& os, const mll& x) { os << (ll)x.v; return os; } // 非負 mod template <class T> static __int128 safe_mod(T a) { return ((a % MOD) + MOD) % MOD; } // 比較 bool operator==(const mll& b) const { return v == b.v; } bool operator==(const int& b) const { return v == safe_mod(b); } bool operator==(const ll& b) const { return v == safe_mod(b); } friend bool operator==(const int& a, const mll& b) { return b == a; } friend bool operator==(const ll& a, const mll& b) { return b == a; } // 演算 mll& operator+=(const mll& b) { v = safe_mod(v + b.v); return *this; } mll& operator-=(const mll& b) { v = safe_mod(v - b.v); return *this; } mll& operator*=(const mll& b) { v = safe_mod(v * b.v); return *this; } mll& operator/=(const mll& b) { *this *= b.inv(); return *this; } mll operator+(const mll& b) const { mll a = *this; return a += b; } mll operator-(const mll& b) const { mll a = *this; return a -= b; } mll operator*(const mll& b) const { mll a = *this; return a *= b; } mll operator/(const mll& b) const { mll a = *this; return a /= b; } mll operator-() const { mll a = *this; return a *= -1; } // int との演算 mll& operator+=(const int& b) { v = safe_mod(v + b); return *this; } mll& operator-=(const int& b) { v = safe_mod(v - b); return *this; } mll& operator*=(const int& b) { v = safe_mod(v * b); return *this; } mll& operator/=(const int& b) { *this *= mll(b).inv(); return *this; } mll operator+(const int& b) const { mll a = *this; return a += b; } mll operator-(const int& b) const { mll a = *this; return a -= b; } mll operator*(const int& b) const { mll a = *this; return a *= b; } mll operator/(const int& b) const { mll a = *this; return a /= b; } friend mll operator+(const int& a, const mll& b) { return b + a; } friend mll operator-(const int& a, const mll& b) { return -(b - a); } friend mll operator*(const int& a, const mll& b) { return b * a; } friend mll operator/(const int& a, const mll& b) { return mll(a) * b.inv(); } // ll との演算 mll& operator+=(const ll& b) { v = safe_mod(v + b); return *this; } mll& operator-=(const ll& b) { v = safe_mod(v - b); return *this; } mll& operator*=(const ll& b) { v = safe_mod(v * b); return *this; } mll& operator/=(const ll& b) { *this *= mll(b).inv(); return *this; } mll operator+(const ll& b) const { mll a = *this; return a += b; } mll operator-(const ll& b) const { mll a = *this; return a -= b; } mll operator*(const ll& b) const { mll a = *this; return a *= b; } mll operator/(const ll& b) const { mll a = *this; return a /= b; } friend mll operator+(const ll& a, const mll& b) { return b + a; } friend mll operator-(const ll& a, const mll& b) { return -(b - a); } friend mll operator*(const ll& a, const mll& b) { return b * a; } friend mll operator/(const ll& a, const mll& b) { return mll(a) * b.inv(); } // 累乗 mll pow(ll d) const { mll res(1), pow2 = *this; while (d > 0) { if (d & 1LL) res *= pow2; pow2 *= pow2; d /= 2; } return res; } // 逆元 mll inv() const { return pow(MOD - 2); } // 法の設定,確認 static void set_mod(ll MOD_) { MOD = MOD_; } static ll mod() { return (ll)MOD; } // 値の確認 ll val() const { return (ll)safe_mod(v); } }; __int128 mll::MOD; //【素数判定/ミラー - ラビン法】 /* * n が素数かを返す. * * 利用:【有限体 F_p 上の計算(64 bit)】 */ bool miller_rabin(ll n) { // 参考 : https://nyaannyaan.github.io/library/prime/fast-factorize.hpp.html //【方法】 // p を奇素数とすると,任意の a=[1..p) についてフェルマーの小定理より // a^(p-1) = 1 (mod p) // となる.これの平方根を考えていくと, // p - 1 = 2^s d (d : 奇数) // と表せば, // a^d = 1 (mod p) or ∃r=[0..s), a^(2^r d) = -1 (mod p) // と書き直せる. // // この対偶を用いて判定することをランダムに選んだ a で繰り返す. // n の範囲を限定するなら擬素数を生じない a を固定的に選べる. const vl as = { 2, 325, 9375, 28178, 450775, 9780504, 1795265022 }; if (n == 2 || n == 3 || n == 5 || n == 13 || n == 19 || n == 73 || n == 193 || n == 407521 || n == 299210837) return true; if (n == 1 || n % 2 == 0) return false; mll::set_mod(n); int s = 0; ll d = n - 1LL; while (d % 2 == 0) { s++; d /= 2; } repe(a, as) { mll powa = mll(a).pow(d); if (powa == 1 || powa == -1) goto LOOP_END; rep(r, s - 1) { powa *= powa; if (powa == 1) return false; if (powa == -1) goto LOOP_END; } return false; LOOP_END:; } return true; } //【約数検出/ポラードのρ法】O(n^(1/4)) /* * n の真の約数を何か 1 つ返す. * * 制約 : n は合成数 * * 利用:【有限体 F_p 上の計算(64 bit)】 */ ll pollard_rho(ll n) { // 参考 : https://qiita.com/Kiri8128/items/eca965fe86ea5f4cbb98 //【方法】 // 適当な定数 c をとり関数 f : Z/nZ → Z/nZ を // f(x) = x^2 + c // と定める. // // 適当な初期値 x[0] = y[0] (= 2) から始め,Z/nZ 上の数列を漸化式 // x[i + 1] = f(x[i]), y[i + 1] = f(f(y[i])) // で定める.フロイドの循環検出法より,もし // gcd(x[i] - y[i], n) = g ∈ (1..n) // であれば,これは f が Z/gZ(g は n の真の約数)で巡回したことを意味する. // // 実際には, // x は r = (2 冪) 個ずつ進める(定数 1/2 倍) // gcd の計算を m = n^(1/8) 程度個まとめて行う(gcd の log を落とす) // ことにより高速化を図る. if (!(n & 1)) return 2; int m = 1 << (msbll(n) / 8); mll::set_mod(n); // n は合成数だが割り算は使わないので問題ない const int c_max = 99; // c を最大どこまで試すか repi(c, 1, c_max) { auto f = [&](mll x) { return x * x + c; }; mll x, y = 2, y_bak; ll g = 1; int r = 1; // g = 1 である間は巡回未検出 while (g == 1) { // x, y を r = 2^i だけ一気に進める. x = y; rep(hoge, r) y = f(y); // 次の r = 2^i 個をまとめて見る. for (int k = 0; k < r; k += m) { // 一気に掛けすぎて g = n となってしまった場合の復元用 y_bak = y; // m 個ごとにまとめて見る. mll mul = 1; rep(i, min(m, r - k)) { y = f(y); // 複数個掛けておき,後でまとめて gcd を計算する. //(フロイドの循環検出法とは違い x を固定しているが, // 巡回は検出できるので問題ない.) mul *= x - y; } g = gcd(mul.val(), n); // g != 1 なら巡回を検出できたので次の処理へ if (g != 1) goto LOOP_END; } r *= 2; } LOOP_END:; // 一気に掛けすぎて g = n となってしまった(であろう)場合 if (g == n) { // 復元用に残しておいた x, y_bak から再スタート g = 1; while (g == 1) { y_bak = f(y_bak); g = gcd((x - y_bak).val(), n); } } // g < n なら g が n の真の約数なのでそれを返す. if (g < n) return g; // g = n ならたまたま真の約数が全て同時検出されてしまったので, // 関数 f における定数項 c の値を別のものに取り替えて再挑戦. } // 複数個の c を試してなお失敗したなら諦める. return n; } //【素因数分解/ポラードのρ法】O(n^(1/4)) /* * n を素因数分解した結果を pps に格納する. * * pps[p] = d : n に素因数 p が d 個含まれていることを表す. * * 利用:【素数判定/ミラー - ラビン法】,【約数検出/ポラードのρ法】 */ void factor_integer64(ll n, map<ll, int>& pps) { pps.clear(); if (n == 1) return; // 検出した約数を記録しておくキュー queue<ll> divs; divs.push(n); while (!divs.empty()) { ll d = divs.front(); divs.pop(); // 約数が素数なら素因数発見 if (miller_rabin(d)) { pps[d]++; } // 約数が合成数なら新たな約数を 2 つ発見する else { ll d1 = pollard_rho(d); ll d2 = d / d1; divs.push(d1); divs.push(d2); } } } int main() { // input_from_file("input.txt"); // output_to_file("output.txt"); int n, k; cin >> n >> k; map<ll, int> k_pps; factor_integer(k, k_pps); vl a(n); cin >> a; vector< map<ll, int> > a_pps(n); rep(i, n) { factor_integer64(a[i], a_pps[i]); } vector<map<map<ll, int>, mint>> dp(n + 1); map<ll, int> one; repe(pp, k_pps) { one[pp.first] = 0; } dp[0][one] = 1; // 貰う DP rep(i, n) { repe(tmp, dp[i]) { auto cnt = tmp.first; dp[i + 1][cnt] += tmp.second; repe(pp, a_pps[i]) { if (cnt.count(pp.first)) { cnt[pp.first] += pp.second; chmin(cnt[pp.first], k_pps[pp.first]); } } dp[i + 1][cnt] += tmp.second; } } auto res = dp[n][k_pps]; cout << res << endl; }