結果
| 問題 |
No.1733 Sum of Sorted Subarrays
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-11-05 22:22:46 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1,116 ms / 3,000 ms |
| コード長 | 11,256 bytes |
| コンパイル時間 | 23,064 ms |
| コンパイル使用メモリ | 401,496 KB |
| 実行使用メモリ | 22,100 KB |
| 最終ジャッジ日時 | 2024-11-06 13:18:37 |
| 合計ジャッジ時間 | 31,291 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 24 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, chars) => {
read_value!($next, String).chars().collect::<Vec<char>>()
};
($next:expr, usize1) => (read_value!($next, usize) - 1);
($next:expr, [ $t:tt ]) => {{
let len = read_value!($next, usize);
read_value!($next, [$t; len])
}};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
/**
* Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
* whose elements are elements of monoid T. Note that constructing this tree requires the identity
* element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
* Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261
* Verified by https://codeforces.com/contest/1114/submission/49759034
*/
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTree<R> {
#[allow(unused)]
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTree {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n - 1],
lazy: vec![R::upe(); 2 * n - 1]
}
}
#[allow(unused)]
pub fn with(a: &[R::T]) -> Self {
let n_ = a.len();
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
let mut dat = vec![R::e(); 2 * n - 1];
for i in 0..n_ {
dat[n - 1 + i] = a[i];
}
for i in (0..n - 1).rev() {
dat[i] = R::biop(dat[2 * i + 1], dat[2 * i + 2]);
}
LazySegTree {
n: n,
dep: dep,
dat: dat,
lazy: vec![R::upe(); 2 * n - 1],
}
}
#[inline]
fn lazy_evaluate_node(&mut self, k: usize, height: usize) {
if self.lazy[k] == R::upe() { return; }
self.dat[k] = R::update(self.dat[k], self.lazy[k], height);
if k < self.n - 1 {
self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
}
self.lazy[k] = R::upe(); // identity for upop
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersects?
if r <= a || b <= l {return;}
if a <= l && r <= b {
self.lazy[k] = R::upop(self.lazy[k], v);
self.lazy_evaluate_node(k, height);
return;
}
self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);
self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
}
/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
#[inline]
pub fn update(&mut self, a: usize, b: usize, v: R::U) {
let n = self.n;
let dep = self.dep;
self.update_sub(a, b, v, 0, dep, 0, n);
}
/* l,r are for simplicity */
fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersect?
if r <= a || b <= l {return R::e();}
if a <= l && r <= b {return self.dat[k];}
let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);
let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
R::biop(vl, vr)
}
/* [a, b) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, a: usize, b: usize) -> R::T {
let n = self.n;
let dep = self.dep;
self.query_sub(a, b, 0, dep, 0, n)
}
}
enum Affine {}
impl ActionRing for Affine {
type T = MInt; // data
type U = (MInt, MInt); // action, (a, b) |-> x |-> ax + b
fn biop(x: Self::T, y: Self::T) -> Self::T {
x + y
}
fn update(x: Self::T, (a, b): Self::U, height: usize) -> Self::T {
x * a + b * MInt::new(1 << height)
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
let (a, b) = fst;
let (c, d) = snd;
(a * c, b * c + d)
}
fn e() -> Self::T {
0.into()
}
fn upe() -> Self::U { // identity for upop
(1.into(), 0.into())
}
}
trait Change { fn chmax(&mut self, x: Self); fn chmin(&mut self, x: Self); }
impl<T: PartialOrd> Change for T {
fn chmax(&mut self, x: T) { if *self < x { *self = x; } }
fn chmin(&mut self, x: T) { if *self > x { *self = x; } }
}
fn main() {
// In order to avoid potential stack overflow, spawn a new thread.
let stack_size = 104_857_600; // 100 MB
let thd = std::thread::Builder::new().stack_size(stack_size);
thd.spawn(|| solve()).unwrap().join().unwrap();
}
fn find_coef(a: &[i64], eq: bool) -> Vec<MInt> {
let n = a.len();
let mut b = vec![];
for i in 0..n {
b.push((a[i], i));
}
if eq {
b.sort();
} else {
b.sort_by_key(|&(a, b)| (a, n - b));
}
let mut st = LazySegTree::<Affine>::new(n);
st.update(0, n, (0.into(), 1.into()));
let mut ans = vec![MInt::new(1); n];
for (_, idx) in b {
let p = st.query(0, idx + 1);
let q = st.query(idx, idx + 1);
ans[idx] = p * q.inv();
st.update(0, idx + 1, (2.into(), 0.into()));
}
ans
}
fn solve() {
input! {
n: usize,
a: [i64; n],
}
let p = find_coef(&a, true);
let mut a = a;
a.reverse();
let mut q = find_coef(&a, false);
q.reverse();
a.reverse();
let mut tot = MInt::new(0);
for i in 0..n {
tot += p[i] * q[i] * a[i];
}
println!("{}", tot);
// eprintln!("p = {:?}", p);
// eprintln!("q = {:?}", q);
}