結果

問題 No.1733 Sum of Sorted Subarrays
ユーザー akakimidoriakakimidori
提出日時 2021-11-05 22:26:51
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 143 ms / 3,000 ms
コード長 11,041 bytes
コンパイル時間 13,104 ms
コンパイル使用メモリ 384,140 KB
実行使用メモリ 13,740 KB
最終ジャッジ日時 2024-11-06 13:25:15
合計ジャッジ時間 16,667 ms
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,820 KB
testcase_02 AC 1 ms
6,816 KB
testcase_03 AC 1 ms
6,816 KB
testcase_04 AC 1 ms
6,816 KB
testcase_05 AC 1 ms
6,820 KB
testcase_06 AC 1 ms
6,820 KB
testcase_07 AC 1 ms
6,820 KB
testcase_08 AC 73 ms
8,160 KB
testcase_09 AC 115 ms
12,680 KB
testcase_10 AC 64 ms
7,932 KB
testcase_11 AC 83 ms
8,652 KB
testcase_12 AC 90 ms
11,828 KB
testcase_13 AC 88 ms
11,820 KB
testcase_14 AC 134 ms
13,532 KB
testcase_15 AC 125 ms
13,096 KB
testcase_16 AC 66 ms
7,964 KB
testcase_17 AC 142 ms
13,636 KB
testcase_18 AC 104 ms
12,408 KB
testcase_19 AC 117 ms
12,668 KB
testcase_20 AC 102 ms
12,156 KB
testcase_21 AC 124 ms
13,028 KB
testcase_22 AC 76 ms
8,372 KB
testcase_23 AC 137 ms
13,700 KB
testcase_24 AC 143 ms
13,728 KB
testcase_25 AC 136 ms
13,724 KB
testcase_26 AC 92 ms
13,740 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused import: `std::io::Write`
   --> src/main.rs:377:5
    |
377 | use std::io::Write;
    |     ^^^^^^^^^^^^^^
    |
    = note: `#[warn(unused_imports)]` on by default

warning: type alias `Map` is never used
   --> src/main.rs:380:6
    |
380 | type Map<K, V> = BTreeMap<K, V>;
    |      ^^^
    |
    = note: `#[warn(dead_code)]` on by default

warning: type alias `Set` is never used
   --> src/main.rs:381:6
    |
381 | type Set<T> = BTreeSet<T>;
    |      ^^^

warning: type alias `Deque` is never used
   --> src/main.rs:382:6
    |
382 | type Deque<T> = VecDeque<T>;
    |      ^^^^^

ソースコード

diff #

// ---------- begin ModInt ----------
mod modint {

    #[allow(dead_code)]
    pub struct Mod;
    impl ConstantModulo for Mod {
        const MOD: u32 = 998_244_353;
    }

    #[allow(dead_code)]
    pub struct StaticMod;
    static mut STATIC_MOD: u32 = 0;
    impl Modulo for StaticMod {
        fn modulo() -> u32 {
            unsafe { STATIC_MOD }
        }
    }

    #[allow(dead_code)]
    impl StaticMod {
        pub fn set_modulo(p: u32) {
            unsafe {
                STATIC_MOD = p;
            }
        }
    }

    use std::marker::*;
    use std::ops::*;

    pub trait Modulo {
        fn modulo() -> u32;
    }

    pub trait ConstantModulo {
        const MOD: u32;
    }

    impl<T> Modulo for T
    where
        T: ConstantModulo,
    {
        fn modulo() -> u32 {
            T::MOD
        }
    }

    pub struct ModInt<T>(pub u32, PhantomData<T>);

    impl<T> Clone for ModInt<T> {
        fn clone(&self) -> Self {
            ModInt::new_unchecked(self.0)
        }
    }

    impl<T> Copy for ModInt<T> {}

    impl<T: Modulo> Add for ModInt<T> {
        type Output = ModInt<T>;
        fn add(self, rhs: Self) -> Self::Output {
            let mut d = self.0 + rhs.0;
            if d >= T::modulo() {
                d -= T::modulo();
            }
            ModInt::new_unchecked(d)
        }
    }

    impl<T: Modulo> AddAssign for ModInt<T> {
        fn add_assign(&mut self, rhs: Self) {
            *self = *self + rhs;
        }
    }

    impl<T: Modulo> Sub for ModInt<T> {
        type Output = ModInt<T>;
        fn sub(self, rhs: Self) -> Self::Output {
            let mut d = self.0 - rhs.0;
            if d >= T::modulo() {
                d += T::modulo();
            }
            ModInt::new_unchecked(d)
        }
    }

    impl<T: Modulo> SubAssign for ModInt<T> {
        fn sub_assign(&mut self, rhs: Self) {
            *self = *self - rhs;
        }
    }

    impl<T: Modulo> Mul for ModInt<T> {
        type Output = ModInt<T>;
        fn mul(self, rhs: Self) -> Self::Output {
            let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
            ModInt::new_unchecked(v as u32)
        }
    }

    impl<T: Modulo> MulAssign for ModInt<T> {
        fn mul_assign(&mut self, rhs: Self) {
            *self = *self * rhs;
        }
    }

    impl<T: Modulo> Neg for ModInt<T> {
        type Output = ModInt<T>;
        fn neg(self) -> Self::Output {
            if self.0 == 0 {
                Self::zero()
            } else {
                Self::new_unchecked(T::modulo() - self.0)
            }
        }
    }

    impl<T> std::fmt::Display for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.0)
        }
    }

    impl<T> std::fmt::Debug for ModInt<T> {
        fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
            write!(f, "{}", self.0)
        }
    }

    impl<T: Modulo> std::str::FromStr for ModInt<T> {
        type Err = std::num::ParseIntError;
        fn from_str(s: &str) -> Result<Self, Self::Err> {
            let val = s.parse::<u32>()?;
            Ok(ModInt::new(val))
        }
    }

    impl<T: Modulo> From<usize> for ModInt<T> {
        fn from(val: usize) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as usize) as u32)
        }
    }

    impl<T: Modulo> From<u64> for ModInt<T> {
        fn from(val: u64) -> ModInt<T> {
            ModInt::new_unchecked((val % T::modulo() as u64) as u32)
        }
    }

    impl<T: Modulo> From<i64> for ModInt<T> {
        fn from(val: i64) -> ModInt<T> {
            let m = T::modulo() as i64;
            ModInt::new((val % m + m) as u32)
        }
    }

    #[allow(dead_code)]
    impl<T> ModInt<T> {
        pub fn new_unchecked(d: u32) -> Self {
            ModInt(d, PhantomData)
        }
        pub fn zero() -> Self {
            ModInt::new_unchecked(0)
        }
        pub fn one() -> Self {
            ModInt::new_unchecked(1)
        }
        pub fn is_zero(&self) -> bool {
            self.0 == 0
        }
    }

    #[allow(dead_code)]
    impl<T: Modulo> ModInt<T> {
        pub fn new(d: u32) -> Self {
            ModInt::new_unchecked(d % T::modulo())
        }
        pub fn pow(&self, mut n: u64) -> Self {
            let mut t = Self::one();
            let mut s = *self;
            while n > 0 {
                if n & 1 == 1 {
                    t *= s;
                }
                s *= s;
                n >>= 1;
            }
            t
        }
        pub fn inv(&self) -> Self {
            assert!(self.0 != 0);
            self.pow(T::modulo() as u64 - 2)
        }
    }
}
// ---------- end ModInt ----------
// ---------- begin Precalc ----------
mod precalc {
    use super::modint::*;
    #[allow(dead_code)]
    pub struct Precalc<T> {
        inv: Vec<ModInt<T>>,
        fact: Vec<ModInt<T>>,
        ifact: Vec<ModInt<T>>,
    }
    #[allow(dead_code)]
    impl<T: Modulo> Precalc<T> {
        pub fn new(n: usize) -> Precalc<T> {
            let mut inv = vec![ModInt::one(); n + 1];
            let mut fact = vec![ModInt::one(); n + 1];
            let mut ifact = vec![ModInt::one(); n + 1];
            for i in 2..(n + 1) {
                fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
            }
            ifact[n] = fact[n].inv();
            if n > 0 {
                inv[n] = ifact[n] * fact[n - 1];
            }
            for i in (1..n).rev() {
                ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
                inv[i] = ifact[i] * fact[i - 1];
            }
            Precalc {
                inv: inv,
                fact: fact,
                ifact: ifact,
            }
        }
        pub fn inv(&self, n: usize) -> ModInt<T> {
            assert!(n > 0);
            self.inv[n]
        }
        pub fn fact(&self, n: usize) -> ModInt<T> {
            self.fact[n]
        }
        pub fn ifact(&self, n: usize) -> ModInt<T> {
            self.ifact[n]
        }
        pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[n - k]
        }
        pub fn comb(&self, n: usize, k: usize) -> ModInt<T> {
            if k > n {
                return ModInt::zero();
            }
            self.fact[n] * self.ifact[k] * self.ifact[n - k]
        }
    }
}
// ---------- end Precalc ----------

use modint::*;
type M = ModInt<Mod>;
// ---------- begin SegmentTree Point update Range query ----------
mod segment_tree {
    pub struct PURQ<T, F> {
        size: usize,
        data: Vec<T>,
        e: T,
        op: F,
    }
    #[allow(dead_code)]
    impl<T, F> PURQ<T, F>
    where
        T: Clone,
        F: Fn(&T, &T) -> T,
    {
        pub fn new(size: usize, e: T, op: F) -> PURQ<T, F> {
            let size = size.next_power_of_two();
            PURQ {
                size,
                data: vec![e.clone(); 2 * size],
                e: e,
                op: op,
            }
        }
        pub fn update(&mut self, x: usize, v: T) {
            assert!(x < self.size);
            let mut x = x + self.size;
            let data = &mut self.data;
            data[x] = v;
            x >>= 1;
            while x > 0 {
                data[x] = (self.op)(&data[2 * x], &data[2 * x + 1]);
                x >>= 1;
            }
        }
        pub fn update_tmp(&mut self, x: usize, v: T) {
            assert!(x < self.size);
            self.data[x + self.size] = v;
        }
        pub fn update_all(&mut self) {
            let data = &mut self.data;
            for k in (1..self.size).rev() {
                data[k] = (self.op)(&data[2 * k], &data[2 * k + 1]);
            }
        }
        pub fn find(&self, l: usize, r: usize) -> T {
            assert!(l <= r && r <= self.size);
            if l == r {
                return self.e.clone();
            }
            let mut p = self.e.clone();
            let mut q = self.e.clone();
            let mut l = l + self.size;
            let mut r = r + self.size;
            let data = &self.data;
            while l < r {
                if l & 1 == 1 {
                    p = (self.op)(&p, &data[l]);
                    l += 1;
                }
                if r & 1 == 1 {
                    r -= 1;
                    q = (self.op)(&data[r], &q);
                }
                l >>= 1;
                r >>= 1;
            }
            (self.op)(&p, &q)
        }
    }
}
// ---------- end SegmentTree Point update Range query ----------
// ---------- begin input macro ----------
// reference: https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
    (source = $s:expr, $($r:tt)*) => {
        let mut iter = $s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
    ($($r:tt)*) => {
        let s = {
            use std::io::Read;
            let mut s = String::new();
            std::io::stdin().read_to_string(&mut s).unwrap();
            s
        };
        let mut iter = s.split_whitespace();
        input_inner!{iter, $($r)*}
    };
}

macro_rules! input_inner {
    ($iter:expr) => {};
    ($iter:expr, ) => {};
    ($iter:expr, $var:ident : $t:tt $($r:tt)*) => {
        let $var = read_value!($iter, $t);
        input_inner!{$iter $($r)*}
    };
}

macro_rules! read_value {
    ($iter:expr, ( $($t:tt),* )) => {
        ( $(read_value!($iter, $t)),* )
    };
    ($iter:expr, [ $t:tt ; $len:expr ]) => {
        (0..$len).map(|_| read_value!($iter, $t)).collect::<Vec<_>>()
    };
    ($iter:expr, chars) => {
        read_value!($iter, String).chars().collect::<Vec<char>>()
    };
    ($iter:expr, bytes) => {
        read_value!($iter, String).bytes().collect::<Vec<u8>>()
    };
    ($iter:expr, usize1) => {
        read_value!($iter, usize) - 1
    };
    ($iter:expr, $t:ty) => {
        $iter.next().unwrap().parse::<$t>().expect("Parse error")
    };
}
// ---------- end input macro ----------

use std::io::Write;
use std::collections::*;

type Map<K, V> = BTreeMap<K, V>;
type Set<T> = BTreeSet<T>;
type Deque<T> = VecDeque<T>;

fn run() {
    input! {
        n: usize,
        a: [u32; n],
    }
    let mut z = a.iter().cloned().enumerate().collect::<Vec<_>>();
    z.sort_by_key(|z| z.1);
    type T = (M, M, M);
    let merge = |a: &T, b: &T| -> T {
        (a.0 * b.0, a.1 + a.0 * b.1, a.2 * b.0 + b.2)
    };
    let mut seg = segment_tree::PURQ::new(n, (M::one(), M::zero(), M::zero()), merge);
    for i in 0..n {
        seg.update_tmp(i, (M::one(), M::one(), M::one()));
    }
    seg.update_all();
    let two = M::new(2u32);
    let mut ans = M::zero();
    for (x, a) in z {
        let l = seg.find(0, x + 1);
        let r = seg.find(x, n);
        let v = M::new(a) * l.2 * r.1;
        ans += v;
        seg.update(x, (two, two, two));
    }
    println!("{}", ans);
}

fn main() {
    run();
}
0