結果
問題 | No.1733 Sum of Sorted Subarrays |
ユーザー | koba-e964 |
提出日時 | 2021-11-05 22:27:20 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 1,152 ms / 3,000 ms |
コード長 | 9,392 bytes |
コンパイル時間 | 26,874 ms |
コンパイル使用メモリ | 391,856 KB |
実行使用メモリ | 22,132 KB |
最終ジャッジ日時 | 2024-11-06 13:26:35 |
合計ジャッジ時間 | 30,806 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,820 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,820 KB |
testcase_04 | AC | 1 ms
6,820 KB |
testcase_05 | AC | 1 ms
6,816 KB |
testcase_06 | AC | 1 ms
6,816 KB |
testcase_07 | AC | 1 ms
6,816 KB |
testcase_08 | AC | 583 ms
12,476 KB |
testcase_09 | AC | 917 ms
20,620 KB |
testcase_10 | AC | 523 ms
12,116 KB |
testcase_11 | AC | 662 ms
13,016 KB |
testcase_12 | AC | 726 ms
19,572 KB |
testcase_13 | AC | 725 ms
19,364 KB |
testcase_14 | AC | 1,088 ms
21,724 KB |
testcase_15 | AC | 984 ms
20,940 KB |
testcase_16 | AC | 520 ms
11,884 KB |
testcase_17 | AC | 1,082 ms
21,960 KB |
testcase_18 | AC | 832 ms
20,124 KB |
testcase_19 | AC | 889 ms
20,328 KB |
testcase_20 | AC | 809 ms
19,872 KB |
testcase_21 | AC | 999 ms
21,204 KB |
testcase_22 | AC | 638 ms
12,776 KB |
testcase_23 | AC | 1,150 ms
22,132 KB |
testcase_24 | AC | 1,152 ms
21,984 KB |
testcase_25 | AC | 1,143 ms
22,132 KB |
testcase_26 | AC | 575 ms
22,128 KB |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /// Verified by https://atcoder.jp/contests/abc198/submissions/21774342 mod mod_int { use std::ops::*; pub trait Mod: Copy { fn m() -> i64; } #[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)] pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> } impl<M: Mod> ModInt<M> { // x >= 0 pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) } fn new_internal(x: i64) -> Self { ModInt { x: x, phantom: ::std::marker::PhantomData } } pub fn pow(self, mut e: i64) -> Self { debug_assert!(e >= 0); let mut sum = ModInt::new_internal(1); let mut cur = self; while e > 0 { if e % 2 != 0 { sum *= cur; } cur *= cur; e /= 2; } sum } #[allow(dead_code)] pub fn inv(self) -> Self { self.pow(M::m() - 2) } } impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> { type Output = Self; fn add(self, other: T) -> Self { let other = other.into(); let mut sum = self.x + other.x; if sum >= M::m() { sum -= M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> { type Output = Self; fn sub(self, other: T) -> Self { let other = other.into(); let mut sum = self.x - other.x; if sum < 0 { sum += M::m(); } ModInt::new_internal(sum) } } impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> { type Output = Self; fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) } } impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> { fn add_assign(&mut self, other: T) { *self = *self + other; } } impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> { fn sub_assign(&mut self, other: T) { *self = *self - other; } } impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> { fn mul_assign(&mut self, other: T) { *self = *self * other; } } impl<M: Mod> Neg for ModInt<M> { type Output = Self; fn neg(self) -> Self { ModInt::new(0) - self } } impl<M> ::std::fmt::Display for ModInt<M> { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result { self.x.fmt(f) } } impl<M: Mod> From<i64> for ModInt<M> { fn from(x: i64) -> Self { Self::new(x) } } } // mod mod_int macro_rules! define_mod { ($struct_name: ident, $modulo: expr) => { #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)] struct $struct_name {} impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } } } } const MOD: i64 = 998_244_353; define_mod!(P, MOD); type MInt = mod_int::ModInt<P>; /** * Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array * whose elements are elements of monoid T. Note that constructing this tree requires the identity * element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+) * Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261 * Verified by https://codeforces.com/contest/1114/submission/49759034 */ pub trait ActionRing { type T: Clone + Copy; // data type U: Clone + Copy + PartialEq + Eq; // action fn biop(x: Self::T, y: Self::T) -> Self::T; fn update(x: Self::T, a: Self::U, height: usize) -> Self::T; fn upop(fst: Self::U, snd: Self::U) -> Self::U; fn e() -> Self::T; fn upe() -> Self::U; // identity for upop } pub struct LazySegTree<R: ActionRing> { n: usize, dep: usize, dat: Vec<R::T>, lazy: Vec<R::U>, } impl<R: ActionRing> LazySegTree<R> { #[allow(unused)] pub fn new(n_: usize) -> Self { let mut n = 1; let mut dep = 0; while n < n_ { n *= 2; dep += 1; } // n is a power of 2 LazySegTree { n: n, dep: dep, dat: vec![R::e(); 2 * n - 1], lazy: vec![R::upe(); 2 * n - 1] } } #[allow(unused)] pub fn with(a: &[R::T]) -> Self { let n_ = a.len(); let mut n = 1; let mut dep = 0; while n < n_ { n *= 2; dep += 1; } // n is a power of 2 let mut dat = vec![R::e(); 2 * n - 1]; for i in 0..n_ { dat[n - 1 + i] = a[i]; } for i in (0..n - 1).rev() { dat[i] = R::biop(dat[2 * i + 1], dat[2 * i + 2]); } LazySegTree { n: n, dep: dep, dat: dat, lazy: vec![R::upe(); 2 * n - 1], } } #[inline] fn lazy_evaluate_node(&mut self, k: usize, height: usize) { if self.lazy[k] == R::upe() { return; } self.dat[k] = R::update(self.dat[k], self.lazy[k], height); if k < self.n - 1 { self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]); self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]); } self.lazy[k] = R::upe(); // identity for upop } #[inline] fn update_node(&mut self, k: usize) { self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]); } fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) { self.lazy_evaluate_node(k, height); // [a,b) and [l,r) intersects? if r <= a || b <= l {return;} if a <= l && r <= b { self.lazy[k] = R::upop(self.lazy[k], v); self.lazy_evaluate_node(k, height); return; } self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2); self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r); self.update_node(k); } /* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */ #[inline] pub fn update(&mut self, a: usize, b: usize, v: R::U) { let n = self.n; let dep = self.dep; self.update_sub(a, b, v, 0, dep, 0, n); } /* l,r are for simplicity */ fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T { self.lazy_evaluate_node(k, height); // [a,b) and [l,r) intersect? if r <= a || b <= l {return R::e();} if a <= l && r <= b {return self.dat[k];} let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2); let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r); self.update_node(k); R::biop(vl, vr) } /* [a, b) (note: half-inclusive) */ #[inline] pub fn query(&mut self, a: usize, b: usize) -> R::T { let n = self.n; let dep = self.dep; self.query_sub(a, b, 0, dep, 0, n) } } enum Affine {} impl ActionRing for Affine { type T = MInt; // data type U = (MInt, MInt); // action, (a, b) |-> x |-> ax + b fn biop(x: Self::T, y: Self::T) -> Self::T { x + y } fn update(x: Self::T, (a, b): Self::U, height: usize) -> Self::T { x * a + b * MInt::new(1 << height) } fn upop(fst: Self::U, snd: Self::U) -> Self::U { let (a, b) = fst; let (c, d) = snd; (a * c, b * c + d) } fn e() -> Self::T { 0.into() } fn upe() -> Self::U { // identity for upop (1.into(), 0.into()) } } fn find_coef(a: &[i64], eq: bool) -> Vec<MInt> { let n = a.len(); let mut b = vec![]; for i in 0..n { b.push((a[i], i)); } if eq { b.sort(); } else { b.sort_by_key(|&(a, b)| (a, n - b)); } let mut st = LazySegTree::<Affine>::new(n); st.update(0, n, (0.into(), 1.into())); let mut ans = vec![MInt::new(1); n]; for (_, idx) in b { let p = st.query(0, idx + 1); let q = st.query(idx, idx + 1); ans[idx] = p * q.inv(); st.update(0, idx + 1, (2.into(), 0.into())); } ans } fn main() { input! { n: usize, a: [i64; n], } let p = find_coef(&a, true); let mut a = a; a.reverse(); let mut q = find_coef(&a, false); q.reverse(); a.reverse(); let mut tot = MInt::new(0); for i in 0..n { tot += p[i] * q[i] * a[i]; } println!("{}", tot); }