結果

問題 No.1733 Sum of Sorted Subarrays
ユーザー leaf_1415
提出日時 2021-11-05 23:10:55
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 1,922 ms / 3,000 ms
コード長 8,931 bytes
コンパイル時間 1,476 ms
コンパイル使用メモリ 114,212 KB
実行使用メモリ 17,280 KB
最終ジャッジ日時 2024-11-06 14:24:51
合計ジャッジ時間 30,896 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <cassert>
#include <vector>
#include <list>
#include <stack>
#include <queue>
#include <deque>
#include <map>
#include <set>
#include <bitset>
#include <string>
#include <algorithm>
#include <utility>
#include <complex>
#include <unordered_set>
#include <unordered_map>
#define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++)
#define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--)
#define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++)
#define chmin(x, y) (x) = min((x), (y))
#define chmax(x, y) (x) = max((x), (y))
#define sz(x) ((ll)(x).size())
#define all(x) (x).begin(),(x).end()
#define outl(...) dump_func(__VA_ARGS__)
#define outf(x) cout << fixed << setprecision(16) << (x) << endl
#define inf 2e18
#define eps 1e-9
const double PI = 3.1415926535897932384626433;
using namespace std;
typedef long long llint;
typedef long long ll;
typedef pair<ll, ll> P;
struct edge{
ll to, cost;
edge(){}
edge(ll a, ll b){ to = a, cost = b;}
};
const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};
//int mod = 1000000007;
int mod = 998244353;
struct mint{
int x;
mint(ll y = 0){if(y < 0 || y >= mod) y = (y%mod+mod)%mod; x = y;}
mint(const mint &ope) {x = ope.x;}
mint operator-(){return mint(-x);}
mint operator+(const mint &ope){return mint(x) += ope;}
mint operator-(const mint &ope){return mint(x) -= ope;}
mint operator*(const mint &ope){return mint(x) *= ope;}
mint operator/(const mint &ope){return mint(x) /= ope;}
mint& operator+=(const mint &ope){
x += ope.x;
if(x >= mod) x -= mod;
return *this;
}
mint& operator-=(const mint &ope){
x += mod - ope.x;
if(x >= mod) x -= mod;
return *this;
}
mint& operator*=(const mint &ope){
ll tmp = x;
tmp *= ope.x, tmp %= mod;
x = tmp;
return *this;
}
mint& operator/=(const mint &ope){
ll n = mod-2; mint mul = ope;
while(n){
if(n & 1) *this *= mul;
mul *= mul;
n >>= 1;
}
return *this;
}
mint inverse(){return mint(1) / *this;}
bool operator ==(const mint &ope){return x == ope.x;}
bool operator !=(const mint &ope){return x != ope.x;}
bool operator <(const mint &ope)const{return x < ope.x;}
};
mint modpow(mint a, ll n){
if(n == 0) return mint(1);
if(n % 2) return a * modpow(a, n-1);
else return modpow(a*a, n/2);
}
istream& operator >>(istream &is, mint &ope){ll t; is >> t, ope.x = t; return is;}
ostream& operator <<(ostream &os, mint &ope){return os << ope.x;}
ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;}
ll modpow(ll a, ll n, ll mod){
if(n == 0) return 1;
if(n % 2) return ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod;
else return modpow((a*a)%mod, n/2, mod) % mod;
}
vector<mint> fact, fact_inv;
void make_fact(int n){
fact.resize(n+1), fact_inv.resize(n+1);
fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i);
fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1);
}
mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];}
mint perm(int n, int k){ return comb(n, k) * fact[k]; }
vector<int> prime, pvec;
void make_prime(int n){
prime.resize(n+1);
rep(i, 2, n){
if(prime[i]) continue;
for(int j = i; j <= n; j += i) prime[j] = i;
}
rep(i, 2, n) if(prime[i] == i) pvec.push_back(i);
}
bool exceed(ll x, ll y, ll m){return x >= m / y + 1;}
void mark(){ cout << "*" << endl; }
void yes(){ cout << "YES" << endl; }
void no(){ cout << "NO" << endl; }
ll floor(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return a/b; else return -((-a+b-1)/b); }
ll ceil(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return (a+b-1)/b; else return -((-a)/b); }
ll modulo(ll a, ll b){ b = abs(b); return a - floor(a, b) * b;}
ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;}
ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);}
ll lcm(ll a, ll b){return a/gcd(a, b)*b;}
ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;}
ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;}
string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(all(ret)); return ret;}
ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;}
template<typename T> void uniq(T &vec){sort(all(vec)); vec.erase(unique(all(vec)), vec.end());}
template<class S, class T> pair<S, T>& operator+=(pair<S, T> &s, const pair<S, T> &t){s.first += t.first, s.second += t.second; return s;}
template<class S, class T> pair<S, T>& operator-=(pair<S, T> &s, const pair<S, T> &t){s.first -= t.first, s.second -= t.second; return s;}
template<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first+t.first, s.second+t.second);}
template<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first-t.first, s.second-t.second);}
template<typename T> ostream& operator << (ostream& os, vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;}
template<typename T> ostream& operator << (ostream& os, const vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;}
template<typename T> ostream& operator << (ostream& os, deque<T>& deq){reps(i, deq) os << deq[i] << " "; return os;}
template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os
    ;}
template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")";
    return os;}
template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& ope){ for(auto p : ope) os << "(" << p.first << ", " << p.second << "
    ),";return os;}
template<typename T> ostream& operator << (ostream& os, set<T>& ope){for(auto x : ope) os << x << " "; return os;}
template<typename T> ostream& operator << (ostream& os, multiset<T>& ope){for(auto x : ope) os << x << " "; return os;}
template<typename T> void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";} cout << endl;}
void dump_func(){cout << endl;}
template <class Head, class... Tail>
void dump_func(Head &&head, Tail &&... tail) {
cout << head;
if(sizeof...(Tail) > 0) cout << " ";
dump_func(std::move(tail)...);
}
struct LazySegTree{
typedef mint SEG;
typedef mint DELAY;
int size;
vector<SEG> seg;
vector<DELAY> delay;
LazySegTree(){}
LazySegTree(int size){
this->size = size;
seg.resize(1<<(size+1));
delay.resize(1<<(size+1));
}
SEG Ident(){ //identity element
return 0;
}
SEG ope(SEG a, SEG b){ //operator
return a+b;
}
void init()
{
for(int i = 0; i < (1<<(size+1)); i++){
seg[i] = Ident();
delay[i] = 1; //
}
}
void eval(int l, int r, int k) //
{
if(delay[k] != mint(1)){
seg[k] *= delay[k]; //
if(l < r){
delay[k*2] *= delay[k];
delay[k*2+1] *= delay[k];
}
delay[k] = 1;
}
}
void update(int i, SEG val)
{
int l = 0, r = (1<<size)-1, k = 1;
eval(l, r, k);
for(int j = size-1; j >= 0; j--){
k <<= 1;
if(i & (1<<j)){
k++;
l = (l+r)/2+1;
}
else r = (l+r)/2;
eval(l, r, k);
}
seg[i+(1<<size)] = val;
l = i, r = i, k = i+(1<<size);
for(int j = 0; j < size; j++){
k /= 2, l &= ~(1<<j), r |= 1<<j;
eval(l, (l+r)/2, k*2), eval((l+r)/2+1, r, k*2+1);
seg[k] = ope(seg[k*2], seg[k*2+1]);
}
}
void add(int a, int b, int k, int l, int r, DELAY val)
{
eval(l, r, k);
if(b < l || r < a) return;
if(a <= l && r <= b){
delay[k] *= val; //
eval(l, r, k);
return;
}
add(a, b, k*2, l, (l+r)/2, val);
add(a, b, k*2+1, (l+r)/2+1, r, val);
seg[k] = ope(seg[k*2], seg[k*2+1]);
}
void add(int a, int b, DELAY val){
if(a > b) return;
add(a, b, 1, 0, (1<<size)-1, val);
}
SEG query(int a, int b, int k, int l, int r)
{
eval(l, r, k);
if(b < l || r < a) return Ident();
if(a <= l && r <= b) return seg[k];
SEG lval = query(a, b, k*2, l, (l+r)/2);
SEG rval = query(a, b, k*2+1, (l+r)/2+1, r);
return ope(lval, rval);
}
SEG query(int a, int b)
{
if(a > b) return Ident();
return query(a, b, 1, 0, (1<<size)-1);
}
};
ll n;
ll a[200005];
vector<P> vec;
LazySegTree lseg(18), rseg(18);
int main(void)
{
ios::sync_with_stdio(0);
cin.tie(0);
cin >> n;
rep(i, 1, n) cin >> a[i], vec.push_back(P(a[i], i));
sort(all(vec));
lseg.init(), rseg.init();
rep(i, 1, n) lseg.update(i, mint(1)), rseg.update(i, mint(1));
mint ans = 0;
for(auto p : vec){
mint r = lseg.query(p.second, n) / lseg.query(p.second, p.second);
mint l = rseg.query(1, p.second) / rseg.query(p.second, p.second);
ans += l * r * mint(p.first);
lseg.add(p.second, n, mint(2)), rseg.add(1, p.second, mint(2));
}
outl(ans);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0