結果

問題 No.1733 Sum of Sorted Subarrays
ユーザー leaf_1415leaf_1415
提出日時 2021-11-05 23:10:55
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 1,922 ms / 3,000 ms
コード長 8,931 bytes
コンパイル時間 1,476 ms
コンパイル使用メモリ 114,212 KB
実行使用メモリ 17,280 KB
最終ジャッジ日時 2024-11-06 14:24:51
合計ジャッジ時間 30,896 ms
ジャッジサーバーID
(参考情報)
judge2 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 10 ms
11,264 KB
testcase_01 AC 9 ms
11,264 KB
testcase_02 AC 9 ms
11,264 KB
testcase_03 AC 9 ms
11,264 KB
testcase_04 AC 9 ms
11,264 KB
testcase_05 AC 10 ms
11,264 KB
testcase_06 AC 9 ms
11,264 KB
testcase_07 AC 9 ms
11,264 KB
testcase_08 AC 1,035 ms
14,204 KB
testcase_09 AC 1,560 ms
16,656 KB
testcase_10 AC 908 ms
14,080 KB
testcase_11 AC 1,185 ms
14,532 KB
testcase_12 AC 1,268 ms
16,764 KB
testcase_13 AC 1,238 ms
16,768 KB
testcase_14 AC 1,889 ms
16,760 KB
testcase_15 AC 1,735 ms
16,636 KB
testcase_16 AC 930 ms
13,948 KB
testcase_17 AC 1,857 ms
16,764 KB
testcase_18 AC 1,420 ms
17,280 KB
testcase_19 AC 1,572 ms
16,640 KB
testcase_20 AC 1,363 ms
16,768 KB
testcase_21 AC 1,717 ms
16,764 KB
testcase_22 AC 1,116 ms
14,336 KB
testcase_23 AC 1,922 ms
16,632 KB
testcase_24 AC 1,915 ms
16,768 KB
testcase_25 AC 1,914 ms
16,764 KB
testcase_26 AC 1,296 ms
16,768 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <ctime>
#include <cstdlib>
#include <cassert>
#include <vector>
#include <list>
#include <stack>
#include <queue>
#include <deque>
#include <map>
#include <set>
#include <bitset>
#include <string>
#include <algorithm>
#include <utility>
#include <complex>
#include <unordered_set>
#include <unordered_map>
#define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++)
#define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--)
#define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++)
#define chmin(x, y) (x) = min((x), (y))
#define chmax(x, y) (x) = max((x), (y))
#define sz(x) ((ll)(x).size())
#define all(x) (x).begin(),(x).end()
#define outl(...) dump_func(__VA_ARGS__)
#define outf(x) cout << fixed << setprecision(16) << (x) << endl
#define inf 2e18
#define eps 1e-9
const double PI = 3.1415926535897932384626433;

using namespace std;

typedef long long llint;
typedef long long ll;
typedef pair<ll, ll> P;

struct edge{
	ll to, cost;
	edge(){}
	edge(ll a, ll b){ to = a, cost = b;}
};
const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1};

//int mod = 1000000007;
int mod = 998244353;

struct mint{
	int x;
	mint(ll y = 0){if(y < 0 || y >= mod) y = (y%mod+mod)%mod; x = y;}
	mint(const mint &ope) {x = ope.x;}
	
	mint operator-(){return mint(-x);}
	mint operator+(const mint &ope){return mint(x) += ope;}
	mint operator-(const mint &ope){return mint(x) -= ope;}
	mint operator*(const mint &ope){return mint(x) *= ope;}
	mint operator/(const mint &ope){return mint(x) /= ope;}
	mint& operator+=(const mint &ope){
		x += ope.x;
		if(x >= mod) x -= mod;
		return *this;
	}
	mint& operator-=(const mint &ope){
		x += mod - ope.x;
		if(x >= mod) x -= mod;
		return *this;
	}
	mint& operator*=(const mint &ope){
		ll tmp = x;
		tmp *= ope.x, tmp %= mod;
		x = tmp;
		return *this;
	}
	mint& operator/=(const mint &ope){
		ll n = mod-2; mint mul = ope;
		while(n){
			if(n & 1) *this *= mul;
			mul *= mul;
			n >>= 1;
		}
		return *this;
	}
	mint inverse(){return mint(1) / *this;}
	bool operator ==(const mint &ope){return x == ope.x;}
	bool operator !=(const mint &ope){return x != ope.x;}
	bool operator <(const mint &ope)const{return x < ope.x;}
};
mint modpow(mint a, ll n){
	if(n == 0) return mint(1);
	if(n % 2) return a * modpow(a, n-1);
	else return modpow(a*a, n/2);
}
istream& operator >>(istream &is, mint &ope){ll t; is >> t, ope.x = t; return is;}
ostream& operator <<(ostream &os, mint &ope){return os << ope.x;}
ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;}

ll modpow(ll a, ll n, ll mod){
	if(n == 0) return 1;
	if(n % 2) return ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod;
	else return modpow((a*a)%mod, n/2, mod) % mod;
}

vector<mint> fact, fact_inv;
void make_fact(int n){
	fact.resize(n+1), fact_inv.resize(n+1);
	fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i);
	fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1);
}
mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];}
mint perm(int n, int k){ return comb(n, k) * fact[k]; }

vector<int> prime, pvec;
void make_prime(int n){
	prime.resize(n+1);
	rep(i, 2, n){
		if(prime[i]) continue;
		for(int j = i; j <= n; j += i) prime[j] = i;
	}
	rep(i, 2, n) if(prime[i] == i) pvec.push_back(i);
}

bool exceed(ll x, ll y, ll m){return x >= m / y + 1;}
void mark(){ cout << "*" << endl; }
void yes(){ cout << "YES" << endl; }
void no(){ cout << "NO" << endl; }
ll floor(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return a/b; else return -((-a+b-1)/b); }
ll ceil(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return (a+b-1)/b; else return -((-a)/b); }
ll modulo(ll a, ll b){ b = abs(b); return a - floor(a, b) * b;}
ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;}
ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);}
ll lcm(ll a, ll b){return a/gcd(a, b)*b;}
ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;}
ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;}
string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(all(ret)); return ret;}
ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;}
template<typename T> void uniq(T &vec){sort(all(vec)); vec.erase(unique(all(vec)), vec.end());}

template<class S, class T> pair<S, T>& operator+=(pair<S, T> &s, const pair<S, T> &t){s.first += t.first, s.second += t.second; return s;}
template<class S, class T> pair<S, T>& operator-=(pair<S, T> &s, const pair<S, T> &t){s.first -= t.first, s.second -= t.second; return s;}
template<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first+t.first, s.second+t.second);}
template<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first-t.first, s.second-t.second);}

template<typename T> ostream& operator << (ostream& os, vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;}
template<typename T> ostream& operator << (ostream& os, const vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;}
template<typename T> ostream& operator << (ostream& os, deque<T>& deq){reps(i,  deq) os << deq[i] << " "; return os;}
template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;}
template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;}
template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& ope){ for(auto p : ope) os << "(" << p.first << ", " << p.second << "),";return os;}
template<typename T> ostream& operator << (ostream& os, set<T>& ope){for(auto x : ope) os << x << " "; return os;}
template<typename T> ostream& operator << (ostream& os, multiset<T>& ope){for(auto x : ope) os << x << " "; return os;}
template<typename T> void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";} cout << endl;}
void dump_func(){cout << endl;}
template <class Head, class... Tail>
void dump_func(Head &&head, Tail &&... tail) {
	cout << head;
	if(sizeof...(Tail) > 0) cout << " ";
	dump_func(std::move(tail)...);
}


struct LazySegTree{
	typedef mint SEG;
	typedef mint DELAY;
	
	int size;
	vector<SEG> seg;
	vector<DELAY> delay;
	
	LazySegTree(){}
	LazySegTree(int size){
		this->size = size;
		seg.resize(1<<(size+1));
		delay.resize(1<<(size+1));
	}
	
	SEG Ident(){ //identity element
		return 0;
	}
	SEG ope(SEG a, SEG b){ //operator
		return a+b;
	}
	
	void init()
	{
		for(int i = 0; i < (1<<(size+1)); i++){
			seg[i] = Ident();
			delay[i] = 1; //
		}
	}
	
	void eval(int l, int r, int k) //
	{
		if(delay[k] != mint(1)){
			seg[k] *= delay[k];  //総和クエリのときは区間幅を乗じる必要がある
			if(l < r){
				delay[k*2] *= delay[k];
				delay[k*2+1] *= delay[k];
			}
			delay[k] = 1;
		}
	}
	
	void update(int i, SEG val)
	{
		int l = 0, r = (1<<size)-1, k = 1;
		
		eval(l, r, k);
		for(int j = size-1; j >= 0; j--){
			k <<= 1;
			if(i & (1<<j)){
				k++;
				l = (l+r)/2+1;
			}
			else r = (l+r)/2;
			eval(l, r, k);
		}
		
		seg[i+(1<<size)] = val;
		
		l = i, r = i, k = i+(1<<size);
		for(int j = 0; j < size; j++){
			k /= 2, l &= ~(1<<j), r |= 1<<j;
			eval(l, (l+r)/2, k*2), eval((l+r)/2+1, r, k*2+1);
			seg[k] = ope(seg[k*2], seg[k*2+1]);
		}
	}
	
	void add(int a, int b, int k, int l, int r, DELAY val)
	{
		eval(l, r, k);
		
		if(b < l || r < a) return;
		if(a <= l && r <= b){
			delay[k] *= val; //
			eval(l, r, k);
			return;
		}
		add(a, b, k*2, l, (l+r)/2, val);
		add(a, b, k*2+1, (l+r)/2+1, r, val);
		seg[k] = ope(seg[k*2], seg[k*2+1]);
	}
	void add(int a, int b, DELAY val){
		if(a > b) return;
		add(a, b, 1, 0, (1<<size)-1, val);
	}
 
	SEG query(int a, int b, int k, int l, int r)
	{
		eval(l, r, k);
		
		if(b < l || r < a) return Ident();
		if(a <= l && r <= b) return seg[k];
		SEG lval = query(a, b, k*2, l, (l+r)/2);
		SEG rval = query(a, b, k*2+1, (l+r)/2+1, r);
		return ope(lval, rval);
	}
	SEG query(int a, int b)
	{
		if(a > b) return Ident();
		return query(a, b, 1, 0, (1<<size)-1);
	}
};

ll n;
ll a[200005];
vector<P> vec;
LazySegTree lseg(18), rseg(18);

int main(void)
{
	ios::sync_with_stdio(0);
	cin.tie(0);
	
	cin >> n;
	rep(i, 1, n) cin >> a[i], vec.push_back(P(a[i], i));
	sort(all(vec));
	
	lseg.init(), rseg.init();
	rep(i, 1, n) lseg.update(i, mint(1)), rseg.update(i, mint(1));
	
	mint ans = 0;
	for(auto p : vec){
		mint r = lseg.query(p.second, n) / lseg.query(p.second, p.second);
		mint l = rseg.query(1, p.second) / rseg.query(p.second, p.second);
		ans += l * r * mint(p.first);
		lseg.add(p.second, n, mint(2)), rseg.add(1, p.second, mint(2));
	}
	outl(ans);
	
	return 0;
}
0