結果
問題 | No.1734 Decreasing Elements |
ユーザー | leaf_1415 |
提出日時 | 2021-11-05 23:50:43 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 391 ms / 3,000 ms |
コード長 | 7,057 bytes |
コンパイル時間 | 1,332 ms |
コンパイル使用メモリ | 116,896 KB |
実行使用メモリ | 28,516 KB |
最終ジャッジ日時 | 2024-11-06 15:44:12 |
合計ジャッジ時間 | 7,660 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,820 KB |
testcase_07 | AC | 186 ms
26,860 KB |
testcase_08 | AC | 186 ms
26,488 KB |
testcase_09 | AC | 209 ms
26,688 KB |
testcase_10 | AC | 203 ms
26,732 KB |
testcase_11 | AC | 251 ms
27,596 KB |
testcase_12 | AC | 171 ms
19,976 KB |
testcase_13 | AC | 233 ms
26,064 KB |
testcase_14 | AC | 342 ms
28,092 KB |
testcase_15 | AC | 292 ms
27,820 KB |
testcase_16 | AC | 391 ms
28,516 KB |
testcase_17 | AC | 351 ms
28,324 KB |
testcase_18 | AC | 380 ms
28,396 KB |
testcase_19 | AC | 185 ms
28,364 KB |
testcase_20 | AC | 188 ms
28,360 KB |
testcase_21 | AC | 194 ms
22,656 KB |
testcase_22 | AC | 220 ms
25,936 KB |
testcase_23 | AC | 243 ms
28,416 KB |
testcase_24 | AC | 281 ms
28,232 KB |
testcase_25 | AC | 293 ms
28,448 KB |
testcase_26 | AC | 296 ms
28,428 KB |
ソースコード
#include <iostream> #include <iomanip> #include <cstdio> #include <cmath> #include <ctime> #include <cstdlib> #include <cassert> #include <vector> #include <list> #include <stack> #include <queue> #include <deque> #include <map> #include <set> #include <bitset> #include <string> #include <algorithm> #include <utility> #include <complex> #include <unordered_set> #include <unordered_map> #define rep(x, s, t) for(ll x = (s); (x) <= (t); (x)++) #define per(x, s, t) for(ll x = (s); (x) >= (t); (x)--) #define reps(x, s) for(ll x = 0; (x) < (ll)(s).size(); (x)++) #define chmin(x, y) (x) = min((x), (y)) #define chmax(x, y) (x) = max((x), (y)) #define sz(x) ((ll)(x).size()) #define all(x) (x).begin(),(x).end() #define outl(...) dump_func(__VA_ARGS__) #define outf(x) cout << fixed << setprecision(16) << (x) << endl #define inf 2e18 #define eps 1e-9 const double PI = 3.1415926535897932384626433; using namespace std; typedef long long llint; typedef long long ll; typedef pair<ll, ll> P; struct edge{ ll to, cost; edge(){} edge(ll a, ll b){ to = a, cost = b;} }; const int dx[] = {1, 0, -1, 0}, dy[] = {0, -1, 0, 1}; //int mod = 1000000007; int mod = 998244353; struct mint{ int x; mint(ll y = 0){if(y < 0 || y >= mod) y = (y%mod+mod)%mod; x = y;} mint(const mint &ope) {x = ope.x;} mint operator-(){return mint(-x);} mint operator+(const mint &ope){return mint(x) += ope;} mint operator-(const mint &ope){return mint(x) -= ope;} mint operator*(const mint &ope){return mint(x) *= ope;} mint operator/(const mint &ope){return mint(x) /= ope;} mint& operator+=(const mint &ope){ x += ope.x; if(x >= mod) x -= mod; return *this; } mint& operator-=(const mint &ope){ x += mod - ope.x; if(x >= mod) x -= mod; return *this; } mint& operator*=(const mint &ope){ ll tmp = x; tmp *= ope.x, tmp %= mod; x = tmp; return *this; } mint& operator/=(const mint &ope){ ll n = mod-2; mint mul = ope; while(n){ if(n & 1) *this *= mul; mul *= mul; n >>= 1; } return *this; } mint inverse(){return mint(1) / *this;} bool operator ==(const mint &ope){return x == ope.x;} bool operator !=(const mint &ope){return x != ope.x;} bool operator <(const mint &ope)const{return x < ope.x;} }; mint modpow(mint a, ll n){ if(n == 0) return mint(1); if(n % 2) return a * modpow(a, n-1); else return modpow(a*a, n/2); } istream& operator >>(istream &is, mint &ope){ll t; is >> t, ope.x = t; return is;} ostream& operator <<(ostream &os, mint &ope){return os << ope.x;} ostream& operator <<(ostream &os, const mint &ope){return os << ope.x;} ll modpow(ll a, ll n, ll mod){ if(n == 0) return 1; if(n % 2) return ((a%mod) * (modpow(a, n-1, mod)%mod)) % mod; else return modpow((a*a)%mod, n/2, mod) % mod; } vector<mint> fact, fact_inv; void make_fact(int n){ fact.resize(n+1), fact_inv.resize(n+1); fact[0] = mint(1); rep(i, 1, n) fact[i] = fact[i-1] * mint(i); fact_inv[n] = fact[n].inverse(); per(i, n-1, 0) fact_inv[i] = fact_inv[i+1] * mint(i+1); } mint comb(int n, int k){ if(n < 0 || k < 0 || n < k) return mint(0); return fact[n] * fact_inv[k] * fact_inv[n-k];} mint perm(int n, int k){ return comb(n, k) * fact[k]; } vector<int> prime, pvec; void make_prime(int n){ prime.resize(n+1); rep(i, 2, n){ if(prime[i]) continue; for(int j = i; j <= n; j += i) prime[j] = i; } rep(i, 2, n) if(prime[i] == i) pvec.push_back(i); } bool exceed(ll x, ll y, ll m){return x >= m / y + 1;} void mark(){ cout << "*" << endl; } void yes(){ cout << "YES" << endl; } void no(){ cout << "NO" << endl; } ll floor(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return a/b; else return -((-a+b-1)/b); } ll ceil(ll a, ll b){ if(b < 0) a *= -1, b *= -1; if(a >= 0) return (a+b-1)/b; else return -((-a)/b); } ll modulo(ll a, ll b){ b = abs(b); return a - floor(a, b) * b;} ll sgn(ll x){ if(x > 0) return 1; if(x < 0) return -1; return 0;} ll gcd(ll a, ll b){if(b == 0) return a; return gcd(b, a%b);} ll lcm(ll a, ll b){return a/gcd(a, b)*b;} ll digitnum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret++; return ret;} ll digitsum(ll x, ll b = 10){ll ret = 0; for(; x; x /= b) ret += x % b; return ret;} string lltos(ll x){string ret; for(;x;x/=10) ret += x % 10 + '0'; reverse(all(ret)); return ret;} ll stoll(string &s){ll ret = 0; for(auto c : s) ret *= 10, ret += c - '0'; return ret;} template<typename T> void uniq(T &vec){sort(all(vec)); vec.erase(unique(all(vec)), vec.end());} template<class S, class T> pair<S, T>& operator+=(pair<S, T> &s, const pair<S, T> &t){s.first += t.first, s.second += t.second; return s;} template<class S, class T> pair<S, T>& operator-=(pair<S, T> &s, const pair<S, T> &t){s.first -= t.first, s.second -= t.second; return s;} template<class S, class T> pair<S, T> operator+(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first+t.first, s.second+t.second);} template<class S, class T> pair<S, T> operator-(const pair<S, T> &s, const pair<S, T> &t){return pair<S,T>(s.first-t.first, s.second-t.second);} template<typename T> ostream& operator << (ostream& os, vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;} template<typename T> ostream& operator << (ostream& os, const vector<T>& vec){reps(i, vec) os << vec[i] << " "; return os;} template<typename T> ostream& operator << (ostream& os, deque<T>& deq){reps(i, deq) os << deq[i] << " "; return os;} template<typename T, typename U> ostream& operator << (ostream& os, pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;} template<typename T, typename U> ostream& operator << (ostream& os, const pair<T, U>& ope){ os << "(" << ope.first << ", " << ope.second << ")"; return os;} template<typename T, typename U> ostream& operator << (ostream& os, map<T, U>& ope){ for(auto p : ope) os << "(" << p.first << ", " << p.second << "),";return os;} template<typename T> ostream& operator << (ostream& os, set<T>& ope){for(auto x : ope) os << x << " "; return os;} template<typename T> ostream& operator << (ostream& os, multiset<T>& ope){for(auto x : ope) os << x << " "; return os;} template<typename T> void outa(T a[], ll s, ll t){rep(i, s, t){ cout << a[i]; if(i < t) cout << " ";} cout << endl;} void dump_func(){cout << endl;} template <class Head, class... Tail> void dump_func(Head &&head, Tail &&... tail) { cout << head; if(sizeof...(Tail) > 0) cout << " "; dump_func(std::move(tail)...); } ll n; ll a[200005]; set<ll> S; ll len[200005]; set<P> T; int main(void) { ios::sync_with_stdio(0); cin.tie(0); cin >> n; rep(i, 1, n) cin >> a[i]; S.insert(0); len[0] = 200001; T.insert(P(len[0], 0)); ll ans = 0; rep(i, 1, n){ auto it = S.upper_bound(a[i]); it--; ll x = a[i] - *it; if(x == 0) continue; ans++; vector<ll> vec; for(auto it = T.rbegin(); it != T.rend(); it++){ if(it->first <= x) break; vec.push_back(it->second); } for(auto l : vec){ T.erase(P(len[l], l)); len[l+x] = len[l] - x; len[l] = x; S.insert(l+x); T.insert(P(len[l], l)); T.insert(P(len[l+x], l+x)); } } outl(ans); return 0; }