結果

問題 No.650 行列木クエリ
ユーザー vwxyzvwxyz
提出日時 2021-11-07 04:44:44
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,228 ms / 2,000 ms
コード長 53,505 bytes
コンパイル時間 508 ms
コンパイル使用メモリ 90,820 KB
実行使用メモリ 150,244 KB
最終ジャッジ日時 2024-10-03 01:23:56
合計ジャッジ時間 8,010 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 65 ms
68,340 KB
testcase_01 AC 810 ms
114,944 KB
testcase_02 AC 1,228 ms
150,228 KB
testcase_03 AC 63 ms
68,016 KB
testcase_04 AC 819 ms
115,204 KB
testcase_05 AC 1,131 ms
148,400 KB
testcase_06 AC 64 ms
68,060 KB
testcase_07 AC 63 ms
67,228 KB
testcase_08 AC 800 ms
113,196 KB
testcase_09 AC 938 ms
150,244 KB
testcase_10 AC 62 ms
68,220 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

import sys
readline=sys.stdin.readline
import heapq
from collections import defaultdict,deque
class Graph:
def __init__(self,V,edges=False,graph=False,directed=False,weighted=False):
self.V=V
self.directed=directed
self.weighted=weighted
if not graph:
self.edges=edges
self.graph=[[] for i in range(self.V)]
if weighted:
for i,j,d in self.edges:
self.graph[i].append((j,d))
if not self.directed:
self.graph[j].append((i,d))
else:
for i,j in self.edges:
self.graph[i].append(j)
if not self.directed:
self.graph[j].append(i)
else:
self.graph=graph
self.edges=[]
for i in range(self.V):
if self.weighted:
for j,d in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j,d))
else:
for j in self.graph[i]:
if self.directed or not self.directed and i<=j:
self.edges.append((i,j))
def SS_BFS(self,s,bipartite_graph=False,linked_components=False,parents=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
seen[s]=True
if linked_components:
lc=[s]
if parents:
ps=[None]*self.V
ps[s]=s
if unweighted_dist or bipartite_graph:
uwd=[float('inf')]*self.V
uwd[s]=0
if weighted_dist:
wd=[float('inf')]*self.V
wd[s]=0
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
if linked_components:
lc.append(y)
if parents:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if type(uwd[i])==float or type(uwd[j])==float:
continue
if not uwd[i]%2^uwd[j]%2:
bg=False
break
else:
for x in range(self.V):
if type(uwd[x])==float:
continue
bg[uwd[x]%2].append(x)
tpl=()
if bipartite_graph:
tpl+=(bg,)
if linked_components:
tpl+=(lc,)
if parents:
tpl+=(ps,)
if unweighted_dist:
tpl+=(uwd,)
if weighted_dist:
tpl+=(wd,)
if len(tpl)==1:
tpl=tpl[0]
return tpl
def AP_BFS(self,bipartite_graph=False,linked_components=False,parents=False):
seen=[False]*self.V
if bipartite_graph:
bg=[None]*self.V
cnt=-1
if linked_components:
lc=[]
if parents:
ps=[None]*self.V
for s in range(self.V):
if seen[s]:
continue
seen[s]=True
if bipartite_graph:
cnt+=1
bg[s]=(cnt,0)
if linked_components:
lc.append([s])
if parents:
ps[s]=s
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
if bipartite_graph:
bg[y]=(cnt,bg[x][1]^1)
if linked_components:
lc[-1].append(y)
if parents:
ps[y]=x
if bipartite_graph:
bg_=bg
bg=[[[],[]] for i in range(cnt+1)]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if not bg_[i][1]^bg_[j][1]:
bg[bg_[i][0]]=False
for x in range(self.V):
if bg[bg_[x][0]]:
bg[bg_[x][0]][bg_[x][1]].append(x)
tpl=()
if bipartite_graph:
tpl+=(bg,)
if linked_components:
tpl+=(lc,)
if parents:
tpl+=(ps,)
if len(tpl)==1:
tpl=tpl[0]
return tpl
def SS_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,parents=False
        ,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False):
seen=[False]*self.V
finished=[False]*self.V
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if parents or cycle_detection or subtree_size:
ps=[None]*self.V
ps[s]=s
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
if subtree_size:
ss=[1]*self.V
if unweighted_dist or bipartite_graph:
uwd=[float('inf')]*self.V
uwd[s]=0
if weighted_dist:
wd=[float('inf')]*self.V
wd[s]=0
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc.append(x)
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if parents or cycle_detection or subtree_size:
ps[y]=x
if unweighted_dist or bipartite_graph:
uwd[y]=uwd[x]+1
if weighted_dist:
wd[y]=wd[x]+d
elif not finished[y]:
if (directed_acyclic or cycle_detection or topological_sort) and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if postorder or topological_sort:
post.append(x)
if subtree_size:
for y in self.graph[x]:
if self.weighted:
y,d=y
if y==ps[x]:
continue
ss[x]+=ss[y]
if bipartite_graph:
bg=[[],[]]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if type(uwd[i])==float or type(uwd[j])==float:
continue
if not uwd[i]%2^uwd[j]%2:
bg=False
break
else:
for x in range(self.V):
if type(uwd[x])==float:
continue
bg[uwd[x]%2].append(x)
tpl=()
if bipartite_graph:
tpl+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
tpl+=(cd,)
if directed_acyclic:
tpl+=(dag,)
if euler_tour:
tpl+=(et,)
if linked_components:
tpl+=(lc,)
if parents:
tpl+=(ps,)
if postorder:
tpl+=(post,)
if preorder:
tpl+=(pre,)
if subtree_size:
tpl+=(ss,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
tpl+=(tp_sort,)
if unweighted_dist:
tpl+=(uwd,)
if weighted_dist:
tpl+=(wd,)
if len(tpl)==1:
tpl=tpl[0]
return tpl
def AP_DFS(self,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,parents=False
        ,postorder=False,preorder=False,topological_sort=False):
seen=[False]*self.V
finished=[False]*self.V
if bipartite_graph:
bg=[None]*self.V
cnt=-1
if directed_acyclic or cycle_detection or topological_sort:
dag=True
if euler_tour:
et=[]
if linked_components:
lc=[]
if parents or cycle_detection:
ps=[None]*self.V
if postorder or topological_sort:
post=[]
if preorder:
pre=[]
for s in range(self.V):
if seen[s]:
continue
if bipartite_graph:
cnt+=1
bg[s]=(cnt,0)
if linked_components:
lc.append([])
if parents:
ps[s]=s
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
if euler_tour:
et.append(x)
if linked_components:
lc[-1].append(x)
if preorder:
pre.append(x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
if bipartite_graph:
bg[y]=(cnt,bg[x][1]^1)
if parents or cycle_detection:
ps[y]=x
elif not finished[y]:
if directed_acyclic and dag:
dag=False
if cycle_detection:
cd=(y,x)
elif not finished[x]:
finished[x]=True
if euler_tour:
et.append(~x)
if postorder or topological_sort:
post.append(x)
if bipartite_graph:
bg_=bg
bg=[[[],[]] for i in range(cnt+1)]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
if not bg_[i][1]^bg_[j][1]:
bg[bg_[i][0]]=False
for x in range(self.V):
if bg[bg_[x][0]]:
bg[bg_[x][0]][bg_[x][1]].append(x)
tpl=()
if bipartite_graph:
tpl+=(bg,)
if cycle_detection:
if dag:
cd=[]
else:
y,x=cd
cd=self.Route_Restoration(y,x,ps)
tpl+=(cd,)
if directed_acyclic:
tpl+=(dag,)
if euler_tour:
tpl+=(et,)
if linked_components:
tpl+=(lc,)
if parents:
tpl+=(ps,)
if postorder:
tpl+=(post,)
if preorder:
tpl+=(pre,)
if topological_sort:
if dag:
tp_sort=post[::-1]
else:
tp_sort=[]
tpl+=(tp_sort,)
if len(tpl)==1:
tpl=tpl[0]
return tpl
def Tree_Diameter(self,weighted=False):
def Farthest_Point(u):
dist=self.SS_BFS(u,weighted_dist=True) if weighted else self.SS_BFS(u,unweighted_dist=True)
fp=0
for i in range(self.V):
if dist[fp]<dist[i]:
fp=i
return fp,dist[fp]
u,d=Farthest_Point(0)
v,d=Farthest_Point(u)
return u,v,d
def SCC(self):
reverse_graph=[[] for i in range(self.V)]
for tpl in self.edges:
i,j=tpl[:2] if self.weighted else tpl
reverse_graph[j].append(i)
postorder=self.AP_DFS(postorder=True)
scc=[]
seen=[False]*self.V
for s in postorder[::-1]:
if seen[s]:
continue
queue=deque([s])
seen[s]=True
lst=[]
while queue:
x=queue.popleft()
lst.append(x)
for y in reverse_graph[x]:
if self.weighted:
y=y[0]
if not seen[y]:
seen[y]=True
queue.append(y)
scc.append(lst)
return scc
def Build_LCA(self,s):
self.lca_euler_tour,self.lca_parents,depth=self.SS_DFS(s,euler_tour=True,parents=True,unweighted_dist=True)
self.lca_dfs_in_index=[None]*self.V
self.lca_dfs_out_index=[None]*self.V
for i,x in enumerate(self.euler_tour):
if x>=0:
self.lca_dfs_in_index[x]=i
else:
self.lca_dfs_out_index[~x]=i
self.ST=Segment_Tree(2*self.V,lambda x,y:min(x,y),float('inf'))
lst=[None]*2*self.V
for i in range(2*self.V):
if self.lca_euler_tour[i]>=0:
lst[i]=depth[self.lca_euler_tour[i]]
else:
lst[i]=depth[self.lca_parents[~self.lca_euler_tour[i]]]
self.ST.Build(lst)
def LCA(self,a,b):
m=min(self.lca_dfs_in_index[a],self.lca_dfs_in_index[b])
M=max(self.lca_dfs_in_index[a],self.lca_dfs_in_index[b])
x=self.lca_euler_tour[self.ST.Fold_Index(m,M+1)]
if x>=0:
return x
else:
return self.lca_parents[~x]
def Build_HLD(self,s):
size=self.SS_DFS(s,subtree_size=True)
seen=[False]*self.V
stack=[s]
self.hld_tour=[]
self.hld_parents=[None]*self.V
self.hld_depth=[None]*self.V
self.hld_path_parents=[None]*self.V
self.hld_path_parents[s]=s
self.hld_depth[s]=0
while stack:
x=stack.pop()
seen[x]=True
self.hld_tour.append(x)
max_size=0
max_size_y=None
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y] and max_size<size[y]:
max_size=size[y]
max_size_y=y
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y] and y!=max_size_y:
stack.append(y)
self.hld_parents[y]=x
self.hld_depth[y]=self.hld_depth[x]+1
self.hld_path_parents[y]=y
if max_size_y!=None:
stack.append(max_size_y)
self.hld_parents[max_size_y]=x
self.hld_depth[max_size_y]=self.hld_depth[x]+1
self.hld_path_parents[max_size_y]=self.hld_path_parents[x]
self.hld_tour_idx=[None]*self.V
for i in range(self.V):
self.hld_tour_idx[self.hld_tour[i]]=i
def HLD(self,a,b,edge=False):
L,R=[],[]
while self.hld_path_parents[a]!=self.hld_path_parents[b]:
if self.hld_depth[self.hld_path_parents[a]]<self.hld_depth[self.hld_path_parents[b]]:
R.append((self.hld_tour_idx[self.hld_path_parents[b]],self.hld_tour_idx[b]+1))
b=self.hld_parents[self.hld_path_parents[b]]
else:
L.append((self.hld_tour_idx[a]+1,self.hld_tour_idx[self.hld_path_parents[a]]))
a=self.hld_parents[self.hld_path_parents[a]]
if edge:
if self.hld_depth[a]!=self.hld_depth[b]:
retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b]+1)]+R[::-1]
else:
retu=L+R[::-1]
else:
if self.hld_depth[a]<self.hld_depth[b]:
retu=L+[(self.hld_tour_idx[a],self.hld_tour_idx[b]+1)]+R[::-1]
else:
retu=L+[(self.hld_tour_idx[a]+1,self.hld_tour_idx[b])]+R[::-1]
return retu
def Dijkstra(self,s,route_restoration=False):
dist=[float('inf')]*self.V
dist[s]=0
hq=[(0,s)]
if route_restoration:
parents=[None]*self.V
parents[s]=s
while hq:
dx,x=heapq.heappop(hq)
if dist[x]<dx:
continue
for y,dy in self.graph[x]:
if dist[y]>dx+dy:
dist[y]=dx+dy
if route_restoration:
parents[y]=x
heapq.heappush(hq,(dist[y],y))
if route_restoration:
return dist,parents
else:
return dist
def Bellman_Ford(self,s,route_restoration=False):
dist=[float('inf')]*self.V
dist[s]=0
if route_restoration:
parents=[s]*self.V
for _ in range(self.V-1):
for i,j,d in self.edges:
if dist[j]>dist[i]+d:
dist[j]=dist[i]+d
if route_restoration:
parents[j]=i
if not self.directed and dist[i]>dist[j]+d:
dist[i]=dist[j]+d
if route_restoration:
parents[i]=j
negative_cycle=[]
for i,j,d in self.edges:
if dist[j]>dist[i]+d:
negative_cycle.append(j)
if not self.directed and dist[i]>dist[j]+d:
negative_cycle.append(i)
if negative_cycle:
is_negative_cycle=[False]*self.V
for i in negative_cycle:
if is_negative_cycle[i]:
continue
else:
queue=deque([i])
is_negative_cycle[i]=True
while queue:
x=queue.popleft()
for y,d in self.graph[x]:
if not is_negative_cycle[y]:
queue.append(y)
is_negative_cycle[y]=True
if route_restoration:
parents[y]=x
for i in range(self.V):
if is_negative_cycle[i]:
dist[i]=-float('inf')
if route_restoration:
return dist,parents
else:
return dist
def Warshall_Floyd(self,route_restoration=False):
dist=[[float('inf')]*self.V for i in range(self.V)]
for i in range(self.V):
dist[i][i]=0
if route_restoration:
parents=[[j for j in range(self.V)] for i in range(self.V)]
for i,j,d in self.edges:
if dist[i][j]>d:
dist[i][j]=d
if route_restoration:
parents[i][j]=i
if not self.directed and dist[j][i]>d:
dist[j][i]=d
if route_restoration:
parents[j][i]=j
for k in range(self.V):
for i in range(self.V):
for j in range(self.V):
if dist[i][j]>dist[i][k]+dist[k][j]:
dist[i][j]=dist[i][k]+dist[k][j]
if route_restoration:
parents[i][j]=parents[k][j]
for i in range(self.V):
if dist[i][i]<0:
for j in range(self.V):
if dist[i][j]!=float('inf'):
dist[i][j]=-float('inf')
if route_restoration:
return dist,parents
else:
return dist
def Route_Restoration(self,s,g,parents):
route=[g]
while s!=g and parents[g]!=g:
g=parents[g]
route.append(g)
route=route[::-1]
return route
def Kruskal(self):
UF=UnionFind(self.V)
sorted_edges=sorted(self.edges,key=lambda x:x[2])
minimum_spnning_tree=[]
for i,j,d in sorted_edges:
if not UF.Same(i,j):
UF.Union(i,j)
minimum_spnning_tree.append((i,j,d))
return minimum_spnning_tree
def Ford_Fulkerson(self,s,t):
max_flow=0
residual_graph=[defaultdict(int) for i in range(self.V)]
if self.weighted:
for i,j,d in self.edges:
if not d:
continue
residual_graph[i][j]+=d
if not self.directed:
residual_graph[j][i]+=d
else:
for i,j in self.edges:
residual_graph[i][j]+=1
if not self.directed:
residual_graph[j][i]+=1
while True:
parents=[None]*self.V
parents[s]=s
seen=[False]*self.V
seen[s]=True
queue=deque([s])
while queue:
x=queue.popleft()
for y in residual_graph[x].keys():
if not seen[y]:
seen[y]=True
queue.append(y)
parents[y]=x
if y==t:
tt=t
while tt!=s:
residual_graph[parents[tt]][tt]-=1
residual_graph[tt][parents[tt]]+=1
if not residual_graph[parents[tt]][tt]:
residual_graph[parents[tt]].pop(tt)
tt=parents[tt]
max_flow+=1
break
else:
continue
break
else:
break
return max_flow
def BFS(self,s):
seen=[False]*self.V
seen[s]=True
queue=deque([s])
while queue:
x=queue.popleft()
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
seen[y]=True
queue.append(y)
return
def DFS(self,s):
seen=[False]*self.V
finished=[False]*self.V
stack=[(s,0)] if self.weighted else [s]
while stack:
if self.weighted:
x,d=stack.pop()
else:
x=stack.pop()
if not seen[x]:
seen[x]=True
stack.append((x,d) if self.weighted else x)
for y in self.graph[x]:
if self.weighted:
y,d=y
if not seen[y]:
stack.append((y,d) if self.weighted else y)
elif not finished[x]:
finished[x]=True
return
class Segment_Tree:
def __init__(self,N,f,e,lst=None):
self.f=f
self.e=e
self.N=N
if lst==None:
self.segment_tree=[self.e]*2*self.N
else:
assert len(lst)<=self.N
self.segment_tree=[self.e]*self.N+[x for x in lst]+[self.e]*(N-len(lst))
for i in range(self.N-1,0,-1):
self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
def __getitem__(self,i):
if type(i)==int:
if -self.N<=i<0:
return self.segment_tree[i+self.N*2]
elif 0<=i<self.N:
return self.segment_tree[i+self.N]
else:
raise IndexError('list index out of range')
else:
a,b,c=i.start,i.stop,i.step
if a==None or a<-self.N:
a=self.N
elif self.N<=a:
a=self.N*2
elif a<0:
a+=self.N*2
else:
a+=self.N
if b==None or self.N<=b:
b=self.N*2
elif b<-self.N:
b=self.N
elif b<0:
b+=self.N*2
else:
b+=self.N
return self.segment_tree[slice(a,b,c)]
def __setitem__(self,i,x):
if -self.N<=i<0:
i+=self.N*2
elif 0<=i<self.N:
i+=self.N
else:
raise IndexError('list index out of range')
self.segment_tree[i]=x
while i>1:
i>>= 1
self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
def Build(self,lst):
for i,x in enumerate(lst,self.N):
self.segment_tree[i]=x
for i in range(self.N-1,0,-1):
self.segment_tree[i]=self.f(self.segment_tree[i<<1],self.segment_tree[i<<1|1])
def Fold(self,L=None,R=None):
if L==None or L<-self.N:
L=self.N
elif self.N<=L:
L=self.N*2
elif L<0:
L+=self.N*2
else:
L+=self.N
if R==None or self.N<=R:
R=self.N*2
elif R<-self.N:
R=self.N
elif R<0:
R+=self.N*2
else:
R+=self.N
vL=self.e
vR=self.e
while L<R:
if L&1:
vL=self.f(vL,self.segment_tree[L])
L+=1
if R&1:
R-=1
vR=self.f(self.segment_tree[R],vR)
L>>=1
R>>=1
return self.f(vL,vR)
def Fold_Index(self,L=None,R=None):
if L==None or L<-self.N:
L=self.N
elif self.N<=L:
L=self.N*2
elif L<0:
L+=self.N*2
else:
L+=self.N
if R==None or self.N<=R:
R=self.N*2
elif R<-self.N:
R=self.N
elif R<0:
R+=self.N*2
else:
R+=self.N
if L==R:
return None
x=self.Fold(L-self.N,R-self.N)
while L<R:
if L&1:
if self.segment_tree[L]==x:
i=L
break
L+=1
if R&1:
R-=1
if self.segment_tree[R]==x:
i=R
break
L>>=1
R>>=1
while i<self.N:
if self.segment_tree[i]==self.segment_tree[i<<1]:
i<<=1
else:
i<<=1
i|=1
i-=self.N
return i
def __str__(self):
return '['+', '.join(map(str,self.segment_tree[self.N:]))+']'
def Extended_Euclid(n,m):
stack=[]
while m:
stack.append((n,m))
n,m=m,n%m
if n>=0:
x,y=1,0
else:
x,y=-1,0
for i in range(len(stack)-1,-1,-1):
n,m=stack[i]
x,y=y,x-(n//m)*y
return x,y
class MOD:
def __init__(self,p,e=1):
self.p=p
self.e=e
self.mod=self.p**self.e
def Pow(self,a,n):
a%=self.mod
if n>=0:
return pow(a,n,self.mod)
else:
assert math.gcd(a,self.mod)==1
x=Extended_Euclid(a,self.mod)[0]
return pow(x,-n,self.mod)
def Build_Fact(self,N):
assert N>=0
self.factorial=[1]
self.cnt=[0]*(N+1)
for i in range(1,N+1):
ii=i
self.cnt[i]=self.cnt[i-1]
while ii%self.p==0:
ii//=self.p
self.cnt[i]+=1
self.factorial.append((self.factorial[-1]*ii)%self.mod)
self.factorial_inve=[None]*(N+1)
self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
for i in range(N-1,-1,-1):
ii=i+1
while ii%self.p==0:
ii//=self.p
self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod
def Fact(self,N):
return self.factorial[N]*pow(self.p,self.cnt[N],self.mod)%self.mod
def Fact_Inve(self,N):
if self.cnt[N]:
return None
return self.factorial_inve[N]
def Comb(self,N,K,divisible_count=False):
if K<0 or K>N:
return 0
retu=self.factorial[N]*self.factorial_inve[K]*self.factorial_inve[N-K]%self.mod
cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
if divisible_count:
return retu,cnt
else:
retu*=pow(self.p,cnt,self.mod)
retu%=self.mod
return retu
class Matrix:
def __init__(self,H=0,W=0,matrix=False,eps=0,mod=0,identity=0):
if identity:
if H:
self.H=H
self.W=H
else:
self.H=W
self.W=W
self.matrix=[[0]*self.W for i in range(self.H)]
for i in range(self.H):
self.matrix[i][i]=identity
elif matrix:
self.matrix=matrix
self.H=len(self.matrix)
self.W=len(self.matrix[0]) if self.matrix else 0
else:
self.H=H
self.W=W
self.matrix=[[0]*self.W for i in range(self.H)]
self.mod=mod
self.eps=eps
def __eq__(self,other):
if type(other)!=Matrix:
return False
if self.H!=other.H:
return False
if self.mod:
for i in range(self.H):
for j in range(self.W):
if self.matrix[i][j]%self.mod!=other.matrix[i][j]%self.mod:
return False
else:
for i in range(self.H):
for j in range(self.W):
if self.eps<abs(self.matrix[i][j]-other.matrix[i][j]):
return False
return True
def __ne__(self,other):
if type(other)!=Matrix:
return True
if self.H!=other.H:
return True
if self.mod:
for i in range(self.H):
for j in range(self.W):
if self.matrix[i][j]%self.mod!=other.matrix[i][j]%self.mod:
return True
else:
for i in range(self.H):
for j in range(self.W):
if self.eps<abs(self.matrix[i][j]-other.matrix[i][j]):
return True
return False
def __add__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
summ=Matrix(matrix=[[(self.matrix[i][j]+other.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps
                    ,mod=self.mod)
else:
summ=Matrix(matrix=[[self.matrix[i][j]+other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
if self.mod:
summ=Matrix(matrix=[[(self.matrix[i][j]+other)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
summ=Matrix(matrix=[[self.matrix[i][j]+other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return summ
def __sub__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
diff=Matrix(matrix=[[(self.matrix[i][j]-other.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps
                    ,mod=self.mod)
else:
diff=Matrix(matrix=[[self.matrix[i][j]-other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
if self.mod:
diff=Matrix(matrix=[[(self.matrix[i][j]-other)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
diff=Matrix(matrix=[[self.matrix[i][j]-other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return diff
def __mul__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
prod=Matrix(matrix=[[(self.matrix[i][j]*other.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps
                    ,mod=self.mod)
else:
prod=Matrix(matrix=[[self.matrix[i][j]*other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
if self.mod:
prod=Matrix(matrix=[[(self.matrix[i][j]*other)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
prod=Matrix(matrix=[[self.matrix[i][j]*other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return prod
def __matmul__(self,other):
if type(other)==Matrix:
assert self.W==other.H
prod=Matrix(H=self.H,W=other.W,eps=self.eps,mod=self.mod)
for i in range(self.H):
for j in range(other.W):
for k in range(self.W):
prod.matrix[i][j]+=self.matrix[i][k]*other.matrix[k][j]
if self.mod:
prod.matrix[i][j]%=self.mod
elif type(other)==int:
assert self.H==self.W
if other==0:
prod=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
elif other==1:
prod=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
prod=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
doub=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
while other>=2:
if other&1:
prod@=doub
doub@=doub
other>>=1
prod@=doub
return prod
def __truediv__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
quot=Matrix(matrix=[[(self.matrix[i][j]*MOD(self.mod).Pow(other.matrix[i][j],-1))%self.mod for j in range(self.W)] for i in range
                    (self.H)],eps=self.eps,mod=self.mod)
else:
quot=Matrix(matrix=[[self.matrix[i][j]/other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
if self.mod:
inve=MOD(self.mod).Pow(other,-1)
quot=Matrix(matrix=[[(self.matrix[i][j]*inve)%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
quot=Matrix(matrix=[[self.matrix[i][j]/other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return quot
def __floordiv__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
quot=Matrix(matrix=[[self.matrix[i][j]//other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
quot=Matrix(matrix=[[self.matrix[i][j]//other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return quot
def __mod__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
rema=Matrix(matrix=[[self.matrix[i][j]%other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
rema=Matrix(matrix=[[self.matrix[i][j]%other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return rema
def __pow__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
if self.mod:
powe=Matrix(matrix=[[pow(self.matrix[i][j],other.matrix[i][j],self.mod) for j in range(self.W)] for i in range(self.H)],eps=self.eps
                    ,mod=self.mod)
else:
powe=Matrix(matrix=[[pow(self.matrix[i][j],other.matrix[i][j]) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self
                    .mod)
else:
if self.mod:
powe=Matrix(matrix=[[pow(self.matrix[i][j],other,self.mod) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod
                    )
else:
powe=Matrix(matrix=[[pow(self.matrix[i][j],other) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return powe
def __lshift__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
lshi=Matrix(matrix=[[self.matrix[i][j]<<other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
lshi=Matrix(matrix=[[self.matrix[i][j]<<other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return lshi
def __rshift__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
rshi=Matrix(matrix=[[self.matrix[i][j]>>other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
rshi=Matrix(matrix=[[self.matrix[i][j]>>other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return rshi
def __and__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
conj=Matrix(matrix=[[self.matrix[i][j]&other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
conj=Matrix(matrix=[[self.matrix[i][j]&other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return conj
def __or__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
disj=Matrix(matrix=[[self.matrix[i][j]|other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
disj=Matrix(matrix=[[self.matrix[i][j]|other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return disj
def __xor__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
excl=Matrix(matrix=[[self.matrix[i][j]^other.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
excl=Matrix(matrix=[[self.matrix[i][j]^other for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return excl
def __iadd__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]+=other.matrix[i][j]
if self.mod:
self.matrix[i][j]%=self.mod
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]+=other
if self.mod:
self.matrix[i][j]%=self.mod
return self
def __isub__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]-=other.matrix[i][j]
if self.mod:
self.matrix[i][j]%=self.mod
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]-=other
if self.mod:
self.matrix[i][j]%=self.mod
return self
def __imul__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]*=other.matrix[i][j]
if self.mod:
self.matrix[i][j]%=self.mod
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]*=other
if self.mod:
self.matrix[i][j]%=self.mod
return self
def __imatmul__(self,other):
if type(other)==Matrix:
assert self.W==other.H
prod=Matrix(H=self.H,W=other.W,eps=self.eps,mod=self.mod)
for i in range(self.H):
for j in range(other.W):
for k in range(self.W):
prod.matrix[i][j]+=self.matrix[i][k]*other.matrix[k][j]
if self.mod:
prod.matrix[i][j]%=self.mod
elif type(other)==int:
assert self.H==self.W
if other==0:
return Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
elif other==1:
prod=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
prod=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
doub=self
while other>=2:
if other&1:
prod@=doub
doub@=doub
other>>=1
prod@=doub
return prod
def __itruediv__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
if self.mod:
self.matrix[i][j]=self.matrix[i][j]*MOD(self.mod).Pow(other.matrix[i][j],-1)%self.mod
else:
self.matrix[i][j]/=other.matrix[i][j]
else:
if self.mod:
inve=MOD(self.mod).Pow(other,-1)
for i in range(self.H):
for j in range(self.W):
if self.mod:
self.matrix[i][j]=self.matrix[i][j]*inve%self.mod
else:
self.matrix[i][j]/=other
return self
def __ifloordiv__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]//=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]//=other
return self
def __imod__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]%=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]%=other
return self
def __ipow__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
if self.mod:
self.matrix[i][j]=pow(self.matrix[i][j],other.matrix[i][j],self.mod)
else:
self.matrix[i][j]=pow(self.matrix[i][j],other.matrix[i][j])
else:
for i in range(self.H):
for j in range(self.W):
if self.mod:
self.matrix[i][j]=pow(self.matrix[i][j],other,self.mod)
else:
self.matrix[i][j]=pow(self.matrix[i][j],other)
return self
def __ilshift__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]<<=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]<<=other
return self
def __irshift__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]>>=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]>>=other
return self
def __iand__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]&=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]&=other
return self
def __ior__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]|=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]|=other
return self
def __ixor__(self,other):
if type(other)==Matrix:
assert self.H==other.H
assert self.W==other.W
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]^=other.matrix[i][j]
else:
for i in range(self.H):
for j in range(self.W):
self.matrix[i][j]^=other
return self
def __neg__(self):
if self.mod:
nega=Matrix(matrix=[[(-self.matrix[i][j])%self.mod for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
else:
nega=Matrix(matrix=[[-self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return nega
def __pos__(self):
posi=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return posi
def __invert__(self):
inve=Matrix(matrix=[[~self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return inve
def __abs__(self):
abso=Matrix(matrix=[[abs(self.matrix[i][j]) for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
return abso
def __getitem__(self,i):
if type(i)==int:
return self.matrix[i]
elif type(i)==tuple:
i,j=i
if type(i)==int:
i=slice(i,i+1)
if type(j)==int:
j=slice(j,j+1)
return Matrix(matrix=[lst[j] for lst in self.matrix[i]],eps=self.eps,mod=self.mod)
def __contains__(self,x):
for i in range(self.H):
if x in self.matrix[i]:
return True
return False
def __str__(self):
digit=[max(len(str(self.matrix[i][j])) for i in range(self.H)) for j in range(self.W)]
return "\n".join([(" [" if i else "[[")+", ".join([str(self.matrix[i][j]).rjust(digit[j]," ") for j in range(self.W)])+"]" for i in range
            (self.H)])+"]"
def __bool__(self):
return True
def Transpose(self):
return Matrix(matrix=[[self.matrix[i][j] for i in range(self.H)] for j in range(self.W)])
def Trace(self):
assert self.H==self.W
trace=sum(self.matrix[i][i] for i in range(self.H))
if self.mod:
trace%=self.mod
return trace
def Elem_Raw_Operate_1(self,i1,i2):
self.matrix[i1],self.matrix[i2]=self.matrix[i2],self.matrix[i1]
def Elem_Raw_Operate_2(self,i,c):
if self.mod:
self.matrix[i]=[self.matrix[i][j]*c%self.mod for j in range(self.W)]
else:
self.matrix[i]=[self.matrix[i][j]*c for j in range(self.W)]
def Elem_Raw_Operate_3(self,i1,i2,c):
if self.mod:
self.matrix[i1]=[(self.matrix[i1][j]+c*self.matrix[i2][j])%self.mod for j in range(self.W)]
else:
self.matrix[i1]=[self.matrix[i1][j]+c*self.matrix[i2][j] for j in range(self.W)]
def Elimination(self,determinant=False,inverse_matrix=False,linear_equation=False,rank=False,upper_triangular=False):
h=0
ut=Matrix(matrix=[[self.matrix[i][j] for j in range(self.W)] for i in range(self.H)],eps=self.eps,mod=self.mod)
if determinant or inverse_matrix:
assert self.H==self.W
det=1
if inverse_matrix:
assert self.H==self.W
im=Matrix(H=self.H,eps=self.eps,mod=self.mod,identity=1)
if linear_equation:
assert self.H==linear_equation.H
le=Matrix(matrix=[[linear_equation.matrix[i][j] for j in range(linear_equation.W)] for i in range(linear_equation.H)],eps=self.eps,mod
                =self.mod)
for j in range(ut.W):
for i in range(h,ut.H):
if abs(ut.matrix[i][j])>ut.eps:
if ut.mod:
inve=MOD(ut.mod).Pow(ut.matrix[i][j],-1)
else:
inve=1/ut.matrix[i][j]
ut.Elem_Raw_Operate_1(i,h)
if determinant and h%2!=i%2:
det=(-det)%self.mod
if inverse_matrix:
im.Elem_Raw_Operate_1(i,h)
if linear_equation:
le.Elem_Raw_Operate_1(i,h)
ut.Elem_Raw_Operate_2(h,inve)
if determinant or inverse_matrix:
det*=inve
if ut.mod:
det%=ut.mod
if inverse_matrix:
im.Elem_Raw_Operate_2(h,inve)
if linear_equation:
le.Elem_Raw_Operate_2(h,inve)
for ii in range(ut.H):
if ii==h:
continue
x=-ut.matrix[ii][j]
ut.Elem_Raw_Operate_3(ii,h,x)
if inverse_matrix:
im.Elem_Raw_Operate_3(ii,h,x)
if linear_equation:
le.Elem_Raw_Operate_3(ii,h,x)
h+=1
break
else:
det=0
tpl=()
if determinant:
tpl+=(det,)
if inverse_matrix:
if det<=0:
im=False
tpl+=(im,)
if linear_equation:
tpl+=(le,)
if rank:
tpl+=(h,)
if upper_triangular:
tpl+=(ut,)
if len(tpl)==1:
tpl=tpl[0]
return tpl
N=int(readline())
edges=[]
for i in range(N-1):
a,b=map(int,readline().split())
edges.append((a,b))
G=Graph(N,edges=edges)
G.Build_HLD(0)
parents=G.SS_DFS(0,parents=True)
mod=10**9+7
ST=Segment_Tree(N,lambda x,y:x@y,Matrix(H=2,identity=1,mod=mod))
Q=int(readline())
for i in range(Q):
query=readline().rstrip()
if query[0]=="x":
i,a,b,c,d=map(int,query[2:].split())
u,v=edges[i]
if u==parents[v]:
u,v=v,u
ST[G.hld_tour_idx[u]]=Matrix(matrix=[[a,b],[c,d]],mod=mod)
else:
i,j=map(int,query[2:].split())
ans=Matrix(H=2,identity=1,mod=mod)
for a,b in G.HLD(i,j,edge=True):
ans@=ST.Fold(a,b)
print(ans[0][0],ans[0][1],ans[1][0],ans[1][1])
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0