結果

問題 No.1745 Selfish Spies 2 (à la Princess' Perfectionism)
ユーザー 👑 ygussany
提出日時 2021-11-07 20:01:43
言語 C
(gcc 13.3.0)
結果
TLE  
実行時間 -
コード長 5,412 bytes
コンパイル時間 530 ms
コンパイル使用メモリ 34,048 KB
実行使用メモリ 37,664 KB
最終ジャッジ日時 2024-11-30 05:04:23
合計ジャッジ時間 151,883 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 35 TLE * 24
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <stdio.h>
#include <stdlib.h>
#define N_MAX 100000
#define M_MAX 100000
#define L_MAX 200000
typedef struct Edge {
struct Edge *next;
int v, id;
char flag;
} edge;
int bipartite_matching_augmentation_naive(int N, char color[], edge* adj[], int mate[])
{
static int i, u, w, par[N_MAX + M_MAX + 1], q[N_MAX + M_MAX + 1], head, tail;
edge *p;
for (u = 1, tail = 0; u <= N; u++) {
if (color[u] == 0 && mate[u] == 0) {
par[u] = u;
q[tail++] = u;
} else par[u] = 0;
}
for (head = 0; head < tail; head++) {
u = q[head];
if (color[u] == 0) {
for (p = adj[u]; p != NULL; p = p->next) {
if (p->flag == 0) continue;
w = p->v;
if (par[w] == 0) {
par[w] = u;
if (mate[w] == 0) break;
q[tail++] = w;
}
}
if (p != NULL) break;
} else {
par[mate[u]] = u;
q[tail++] = mate[u];
}
}
if (head == tail) return 0;
// Augmentation
for (u = par[w]; u != w; w = par[u], u = par[w]) {
mate[u] = w;
mate[w] = u;
}
return 1;
}
int DFS_bipartite_matching(edge* aux[], int par[], int u)
{
int w;
for (; aux[u] != NULL; aux[u] = aux[u]->next) {
w = aux[u]->v;
if (par[w] == 0) { // w is a sink
par[w] = u;
return w;
} else if (par[w] > 0) continue; // w is already checked
par[w] = u;
w = DFS_bipartite_matching(aux, par, w);
if (w > 0) return w;
}
return 0;
}
int bipartite_matching_augmentation(int N, char color[], edge* adj[], int mate[])
{
static int i, u, w, depth[N_MAX + M_MAX + 1], par[N_MAX + M_MAX + 1], q[N_MAX + M_MAX + 1], head, tail;
static edge *aux[N_MAX + M_MAX + 1], f[L_MAX * 2], *p;
for (u = 1, tail = 0, par[0] = 0; u <= N; u++) {
if (mate[u] == 0) { // u is a source of sink
if (color[u] == 0) { // u is a source
depth[u] = 0;
q[tail++] = u;
} else depth[u] = N;
par[u] = 0;
} else {
depth[u] = N;
par[u] = -1;
}
}
// BFS for constructing the layered network
for (head = 0, i = 0; head < tail; head++) {
u = q[head];
aux[u] = NULL;
if (color[u] == 0) {
for (p = adj[u]; p != NULL; p = p->next) {
w = p->v;
if (mate[u] == w) continue; // No arc in this direction
if (depth[w] == N) { // w has been found for the first time
depth[w] = depth[u] + 1;
q[tail++] = w;
}
if (depth[w] == depth[u] + 1) { // Add the arc uw
f[i].v = w;
f[i].next = aux[u];
aux[u] = &(f[i++]);
}
}
} else if (mate[u] != 0) {
w = mate[u];
if (depth[w] == N) { // w has been found for the first time
depth[w] = depth[u] + 1;
q[tail++] = w;
}
if (depth[w] == depth[u] + 1) { // Add the arc uw
f[i].v = w;
f[i].next = aux[u];
aux[u] = &(f[i++]);
}
}
}
// DFS for finding disjoint augmenting paths
for (u = 1, tail = 0; u <= N; u++) {
if (depth[u] != 0) continue;
w = DFS_bipartite_matching(aux, par, u);
if (w > 0) q[tail++] = w; // An augmenting path from u to w has been found
}
// Augmentation
for (head = 0; head < tail; head++) {
for (w = q[head], u = par[w]; u > 0; w = par[u], u = par[w]) {
mate[u] = w;
mate[w] = u;
}
}
return tail;
}
int bipartite_matching(int N, char color[], edge* adj[], int mate[])
{
int i, u, dif, ans = 0;
edge *p;
for (u = 1; u <= N; u++) mate[u] = 0; // Initialization
do { // Augmentation
dif = bipartite_matching_augmentation(N, color, adj, mate);
ans += dif;
} while (dif != 0);
return ans;
}
// 2. Relatively naive solution (O(L^2) time)
void rel_naive2(int N, int M, int L, int s[], int t[], char ans[])
{
static char color[N_MAX + M_MAX + 1];
static int i, u, w, mate[N_MAX + M_MAX + 1];
static edge *adj[N_MAX + M_MAX + 1], e[L_MAX * 2 + 1], *p;
for (u = 1; u <= N + M; u++) {
adj[u] = NULL;
color[u] = (u > N)? 1: 0;
}
for (i = 0; i < L; i++) {
u = s[i+1];
w = t[i+1] + N;
e[i*2].v = w;
e[i*2].id = i * 2;
e[i*2].flag = 1;
e[i*2].next = adj[u];
adj[u] = &(e[i*2]);
e[i*2+1].v = u;
e[i*2+1].id = i * 2 + 1;
e[i*2+1].flag = 1;
e[i*2+1].next = adj[w];
adj[w] = &(e[i*2+1]);
}
int j = 0, x, mu = bipartite_matching(N + M, color, adj, mate);
static int tmp_mate[N_MAX + M_MAX + 1];
for (i = 0; i < L; i++) {
u = s[i+1];
w = t[i+1] + N;
if (mate[u] == w || mate[u] == 0 || mate[w] == 0) {
ans[i+1] = 1;
continue;
}
for (x = 1; x <= N + M; x++) tmp_mate[x] = mate[x];
tmp_mate[tmp_mate[u]] = 0;
tmp_mate[tmp_mate[w]] = 0;
for (p = adj[u]; p != NULL; p = p->next) {
p->flag = 0;
e[p->id ^ 1].flag = 0;
}
for (p = adj[w]; p != NULL; p = p->next) {
p->flag = 0;
e[p->id ^ 1].flag = 0;
}
if (bipartite_matching_augmentation_naive(N + M, color, adj, tmp_mate) == 0) ans[i+1] = 0;
else ans[i+1] = 1;
for (p = adj[u]; p != NULL; p = p->next) {
p->flag = 1;
e[p->id ^ 1].flag = 1;
}
for (p = adj[w]; p != NULL; p = p->next) {
p->flag = 1;
e[p->id ^ 1].flag = 1;
}
}
}
int main()
{
char ans[L_MAX + 1];
int i, N, M, L, s[L_MAX + 1], t[L_MAX + 1];
scanf("%d %d %d", &N, &M, &L);
for (i = 1; i <= L; i++) scanf("%d %d", &(s[i]), &(t[i]));
rel_naive2(N, M, L, s, t, ans);
for (i = 1; i <= L; i++) {
if (ans[i] == 0) printf("No\n");
else printf("Yes\n");
}
fflush(stdout);
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0