結果

問題 No.1745 Selfish Spies 2 (à la Princess' Perfectionism)
ユーザー ygussanyygussany
提出日時 2021-11-07 20:01:43
言語 C
(gcc 12.3.0)
結果
TLE  
実行時間 -
コード長 5,412 bytes
コンパイル時間 451 ms
コンパイル使用メモリ 33,536 KB
実行使用メモリ 25,916 KB
最終ジャッジ日時 2024-05-07 12:19:13
合計ジャッジ時間 8,335 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
9,988 KB
testcase_01 AC 3 ms
11,908 KB
testcase_02 AC 3 ms
12,036 KB
testcase_03 AC 3 ms
12,028 KB
testcase_04 AC 3 ms
12,036 KB
testcase_05 AC 3 ms
12,040 KB
testcase_06 AC 3 ms
12,036 KB
testcase_07 AC 3 ms
12,036 KB
testcase_08 AC 3 ms
12,032 KB
testcase_09 AC 2 ms
10,000 KB
testcase_10 AC 3 ms
12,032 KB
testcase_11 AC 3 ms
12,052 KB
testcase_12 AC 3 ms
12,036 KB
testcase_13 AC 3 ms
12,036 KB
testcase_14 AC 4 ms
12,088 KB
testcase_15 AC 4 ms
14,212 KB
testcase_16 AC 5 ms
14,216 KB
testcase_17 AC 25 ms
14,104 KB
testcase_18 AC 17 ms
12,064 KB
testcase_19 AC 3 ms
12,048 KB
testcase_20 AC 2 ms
12,168 KB
testcase_21 AC 4 ms
14,088 KB
testcase_22 AC 3 ms
12,172 KB
testcase_23 AC 3 ms
12,168 KB
testcase_24 AC 313 ms
12,312 KB
testcase_25 AC 5 ms
12,284 KB
testcase_26 AC 7 ms
12,064 KB
testcase_27 AC 54 ms
12,444 KB
testcase_28 TLE -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
testcase_54 -- -
testcase_55 -- -
testcase_56 -- -
testcase_57 -- -
testcase_58 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <stdio.h>
#include <stdlib.h>

#define N_MAX 100000
#define M_MAX 100000
#define L_MAX 200000

typedef struct Edge {
	struct Edge *next;
	int v, id;
	char flag;
} edge;



int bipartite_matching_augmentation_naive(int N, char color[], edge* adj[], int mate[])
{
	static int i, u, w, par[N_MAX + M_MAX + 1], q[N_MAX + M_MAX + 1], head, tail;
	edge *p;
	for (u = 1, tail = 0; u <= N; u++) {
		if (color[u] == 0 && mate[u] == 0) {
			par[u] = u;
			q[tail++] = u;
		} else par[u] = 0;
	}
	for (head = 0; head < tail; head++) {
		u = q[head];
		if (color[u] == 0) {
			for (p = adj[u]; p != NULL; p = p->next) {
				if (p->flag == 0) continue;
				w = p->v;
				if (par[w] == 0) {
					par[w] = u;
					if (mate[w] == 0) break;
					q[tail++] = w;
				}
			}
			if (p != NULL) break;
		} else {
			par[mate[u]] = u;
			q[tail++] = mate[u];
		}
	}
	if (head == tail) return 0;
	
	// Augmentation
	for (u = par[w]; u != w; w = par[u], u = par[w]) {
		mate[u] = w;
		mate[w] = u;
	}
	return 1;
}

int DFS_bipartite_matching(edge* aux[], int par[], int u)
{
	int w;
	for (; aux[u] != NULL; aux[u] = aux[u]->next) {
		w = aux[u]->v;
		if (par[w] == 0) { // w is a sink
			par[w] = u;
			return w;
		} else if (par[w] > 0) continue; // w is already checked
		par[w] = u;
		w = DFS_bipartite_matching(aux, par, w);
		if (w > 0) return w;
	}
	return 0;
}

int bipartite_matching_augmentation(int N, char color[], edge* adj[], int mate[])
{
	static int i, u, w, depth[N_MAX + M_MAX + 1], par[N_MAX + M_MAX + 1], q[N_MAX + M_MAX + 1], head, tail;
	static edge *aux[N_MAX + M_MAX + 1], f[L_MAX * 2], *p;
	for (u = 1, tail = 0, par[0] = 0; u <= N; u++) {
		if (mate[u] == 0) { // u is a source of sink
			if (color[u] == 0) { // u is a source
				depth[u] = 0;
				q[tail++] = u;
			} else depth[u] = N;
			par[u] = 0;
		} else {
			depth[u] = N;
			par[u] = -1;
		}
	}
	
	// BFS for constructing the layered network
	for (head = 0, i = 0; head < tail; head++) {
		u = q[head];
		aux[u] = NULL;
		if (color[u] == 0) {
			for (p = adj[u]; p != NULL; p = p->next) {
				w = p->v;
				if (mate[u] == w) continue; // No arc in this direction
				if (depth[w] == N) { // w has been found for the first time
					depth[w] = depth[u] + 1;
					q[tail++] = w;
				}
				if (depth[w] == depth[u] + 1) { // Add the arc uw
					f[i].v = w;
					f[i].next = aux[u];
					aux[u] = &(f[i++]);
				}
			}
		} else if (mate[u] != 0) {
			w = mate[u];
			if (depth[w] == N) { // w has been found for the first time
				depth[w] = depth[u] + 1;
				q[tail++] = w;
			}
			if (depth[w] == depth[u] + 1) { // Add the arc uw
				f[i].v = w;
				f[i].next = aux[u];
				aux[u] = &(f[i++]);
			}
		}
	}

	// DFS for finding disjoint augmenting paths
	for (u = 1, tail = 0; u <= N; u++) {
		if (depth[u] != 0) continue;
		w = DFS_bipartite_matching(aux, par, u);
		if (w > 0) q[tail++] = w; // An augmenting path from u to w has been found
	}
	
	// Augmentation
	for (head = 0; head < tail; head++) {
		for (w = q[head], u = par[w]; u > 0; w = par[u], u = par[w]) {
			mate[u] = w;
			mate[w] = u;
		}
	}
	return tail;
}

int bipartite_matching(int N, char color[], edge* adj[], int mate[])
{
	int i, u, dif, ans = 0;
	edge *p;
	for (u = 1; u <= N; u++) mate[u] = 0; // Initialization
	do { // Augmentation
		dif = bipartite_matching_augmentation(N, color, adj, mate);
		ans += dif;
	} while (dif != 0);
	return ans;
}



// 2. Relatively naive solution (O(L^2) time)
void rel_naive2(int N, int M, int L, int s[], int t[], char ans[])
{
	static char color[N_MAX + M_MAX + 1];
	static int i, u, w, mate[N_MAX + M_MAX + 1];
	static edge *adj[N_MAX + M_MAX + 1], e[L_MAX * 2 + 1], *p;
	for (u = 1; u <= N + M; u++) {
		adj[u] = NULL;
		color[u] = (u > N)? 1: 0;
	}
	for (i = 0; i < L; i++) {
		u = s[i+1];
		w = t[i+1] + N;
		e[i*2].v = w;
		e[i*2].id = i * 2;
		e[i*2].flag = 1;
		e[i*2].next = adj[u];
		adj[u] = &(e[i*2]);
		e[i*2+1].v = u;
		e[i*2+1].id = i * 2 + 1;
		e[i*2+1].flag = 1;
		e[i*2+1].next = adj[w];
		adj[w] = &(e[i*2+1]);
	}
	
	int j = 0, x, mu = bipartite_matching(N + M, color, adj, mate);
	static int tmp_mate[N_MAX + M_MAX + 1];
	for (i = 0; i < L; i++) {
		u = s[i+1];
		w = t[i+1] + N;
		if (mate[u] == w || mate[u] == 0 || mate[w] == 0) {
			ans[i+1] = 1;
			continue;
		}

		for (x = 1; x <= N + M; x++) tmp_mate[x] = mate[x];
		tmp_mate[tmp_mate[u]] = 0;
		tmp_mate[tmp_mate[w]] = 0;
		for (p = adj[u]; p != NULL; p = p->next) {
			p->flag = 0;
			e[p->id ^ 1].flag = 0;
		}
		for (p = adj[w]; p != NULL; p = p->next) {
			p->flag = 0;
			e[p->id ^ 1].flag = 0;
		}
		if (bipartite_matching_augmentation_naive(N + M, color, adj, tmp_mate) == 0) ans[i+1] = 0;
		else ans[i+1] = 1;
		for (p = adj[u]; p != NULL; p = p->next) {
			p->flag = 1;
			e[p->id ^ 1].flag = 1;
		}
		for (p = adj[w]; p != NULL; p = p->next) {
			p->flag = 1;
			e[p->id ^ 1].flag = 1;
		}
	}
}



int main()
{
	char ans[L_MAX + 1];
	int i, N, M, L, s[L_MAX + 1], t[L_MAX + 1];
	scanf("%d %d %d", &N, &M, &L);
	for (i = 1; i <= L; i++) scanf("%d %d", &(s[i]), &(t[i]));
	rel_naive2(N, M, L, s, t, ans);
	for (i = 1; i <= L; i++) {
		if (ans[i] == 0) printf("No\n");
		else printf("Yes\n");
	}
	fflush(stdout);
	return 0;
}
0