結果
問題 | No.1661 Sum is Prime (Hard Version) |
ユーザー | koba-e964 |
提出日時 | 2021-11-11 11:28:06 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 1,319 ms / 3,000 ms |
コード長 | 4,670 bytes |
コンパイル時間 | 14,659 ms |
コンパイル使用メモリ | 378,000 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-30 17:00:26 |
合計ジャッジ時間 | 26,892 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,248 KB |
testcase_02 | AC | 724 ms
5,248 KB |
testcase_03 | AC | 3 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 3 ms
5,248 KB |
testcase_06 | AC | 2 ms
5,248 KB |
testcase_07 | AC | 3 ms
5,248 KB |
testcase_08 | AC | 3 ms
5,248 KB |
testcase_09 | AC | 3 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 616 ms
5,248 KB |
testcase_13 | AC | 589 ms
5,248 KB |
testcase_14 | AC | 785 ms
5,248 KB |
testcase_15 | AC | 1,033 ms
5,248 KB |
testcase_16 | AC | 848 ms
5,248 KB |
testcase_17 | AC | 678 ms
5,248 KB |
testcase_18 | AC | 299 ms
5,248 KB |
testcase_19 | AC | 477 ms
5,248 KB |
testcase_20 | AC | 326 ms
5,248 KB |
testcase_21 | AC | 715 ms
5,248 KB |
testcase_22 | AC | 1,319 ms
5,248 KB |
testcase_23 | AC | 1,278 ms
5,248 KB |
testcase_24 | AC | 1,027 ms
5,248 KB |
ソースコード
use std::cmp::*; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } struct DivDP { // stores dp[n], dp[n/2], ..., dp[n/b]. dp_big: Vec<i64>, dp: Vec<i64>, n: i64, b: i64, } impl DivDP { fn new(n: i64, b: i64) -> Self { let dp_big = vec![0; b as usize + 1]; let dp = vec![0; (n / b) as usize]; DivDP { dp_big: dp_big, dp: dp, n: n, b: b, } } // pos should be of form floor(n / ???). fn upd<F>(&mut self, pos: i64, f: F) where F: Fn(i64) -> i64 { if pos >= self.n / self.b { let idx = self.n / pos; debug_assert_eq!(pos, self.n / idx); unsafe { let val = *self.dp_big.get_unchecked(idx as usize); *self.dp_big.get_unchecked_mut(idx as usize) = f(val); } return; } let idx = pos as usize; unsafe { let val = *self.dp.get_unchecked(idx); *self.dp.get_unchecked_mut(idx) = f(val); } } fn get(&self, pos: i64) -> i64 { if pos >= self.n / self.b { let idx = self.n / pos; debug_assert_eq!(pos, self.n / idx); return self.dp_big[idx as usize]; } let idx = pos as usize; self.dp[idx] } fn init<F>(&mut self, f: F) where F: Fn(i64) -> i64 { for i in 0..self.dp.len() { self.dp[i] = f(i as i64); } for i in (1..self.dp_big.len()).rev() { self.dp_big[i] = f(self.n / i as i64); } } #[allow(unused)] fn upd_all<F>(&mut self, f: F) where F: Fn(i64, i64) -> i64 { for i in 0..self.dp.len() { self.dp[i] = f(i as i64, self.dp[i]); } for i in (1..self.dp_big.len()).rev() { self.dp_big[i] = f(self.n / i as i64, self.dp_big[i]); } } } impl std::fmt::Debug for DivDP { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { for i in 0..self.dp.len() { writeln!(f, "{}: {}", i, self.dp[i])?; } for i in (1..self.dp_big.len()).rev() { writeln!(f, "{}: {}", self.n / i as i64, self.dp_big[i])?; } Ok(()) } } fn primes(v: usize) -> Vec<usize> { let mut pr = vec![true; v + 1]; pr[0] = false; pr[1] = false; for i in 2..v + 1 { if !pr[i] { continue; } for j in 2..v / i + 1 { pr[i * j] = false; } } let prs: Vec<_> = (0..v + 1).filter(|&i| pr[i]).collect(); prs } fn is_prime(x: i64) -> bool { if x <= 1 { return false; } let mut i = 2; while i * i <= x { if x % i == 0 { return false; } i += 1; } true } // return pi(n) + pi(n / 2) fn calc(n: i64, prs: &[usize]) -> i64 { if n <= 1 { return 0; } let mut sqn = 0; while sqn * sqn <= n { sqn += 1; } sqn -= 1; let mut dp = DivDP::new(n, sqn); dp.init(|x| max(0, x - 1)); for &p in prs { let p = p as i64; if p * p > n { break; } for i in 1..=min(sqn, n / p / p) { let val = dp.get(n / i / p); let val = val - dp.get(p - 1); dp.upd(n / i, |x| x - val); } for i in (p * p..n / sqn).rev() { let val = dp.get(i / p); let val = val - dp.get(p - 1); dp.upd(i, |x| x - val); } } // dp[j] = #{x <= j | x is prime} dp.get(n) + dp.get(n / 2) } // Tags: lucys-algorithm, prime-counting fn main() { input!(l: i64, r: i64); let prs = primes(150_000); let mut val = calc(2 * r - 1, &prs) - calc(2 * l - 1, &prs); if is_prime(r) { val += 1; } if 2 * l - 1 < 2 && 2 <= 2 * r - 1 { val -= 1; } println!("{}", val); }