結果
問題 | No.659 徘徊迷路 |
ユーザー | hamray |
提出日時 | 2021-11-12 18:25:38 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 68 ms / 2,000 ms |
コード長 | 11,088 bytes |
コンパイル時間 | 2,484 ms |
コンパイル使用メモリ | 220,144 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-25 07:04:21 |
合計ジャッジ時間 | 3,735 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 15 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 21 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 25 ms
6,816 KB |
testcase_09 | AC | 58 ms
6,816 KB |
testcase_10 | AC | 67 ms
6,820 KB |
testcase_11 | AC | 67 ms
6,820 KB |
testcase_12 | AC | 14 ms
6,820 KB |
testcase_13 | AC | 58 ms
6,816 KB |
testcase_14 | AC | 58 ms
6,820 KB |
testcase_15 | AC | 68 ms
6,820 KB |
testcase_16 | AC | 67 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> //#include <atcoder/all> //using namespace atcoder; #pragma GCC target ("avx2") #pragma GCC optimization ("O3") #pragma GCC optimization ("unroll-loops") using namespace std; typedef vector<int> VI; typedef vector<VI> VVI; typedef vector<string> VS; typedef pair<int, int> PII; typedef pair<int, int> pii; typedef pair<long long, long long> PLL; typedef pair<int, PII> TIII; typedef long long ll; typedef long double ld; typedef unsigned long long ull; #define FOR(i, s, n) for (int i = s; i < (int)n; ++i) #define REP(i, n) FOR(i, 0, n) #define rep(i, a, b) for (int i = a; i < (b); ++i) #define trav(a, x) for (auto &a : x) #define all(x) x.begin(), x.end() #define MOD 1000000007 template<class T1, class T2> inline bool chmax(T1 &a, T2 b) {if (a < b) {a = b; return true;} return false;} template<class T1, class T2> inline bool chmin(T1 &a, T2 b) {if (a > b) {a = b; return true;} return false;} const double EPS = 1e-10, PI = acos(-1); const double pi = 3.141592653589793238462643383279; //ここから編集 typedef string::const_iterator State; ll GCD(ll a, ll b){ return (b==0)?a:GCD(b, a%b); } ll LCM(ll a, ll b){ return a/GCD(a, b) * b; } template< int mod > struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int) (1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while(b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while(n > 0) { if(n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt< mod >(t); return (is); } static int get_mod() { return mod; } }; using modint = ModInt< 1000000007 >; template< typename T > struct Combination { vector< T > _fact, _rfact, _inv; Combination(int sz) : _fact(sz + 1), _rfact(sz + 1), _inv(sz + 1) { _fact[0] = _rfact[sz] = _inv[0] = 1; for(int i = 1; i <= sz; i++) _fact[i] = _fact[i - 1] * i; _rfact[sz] /= _fact[sz]; for(int i = sz - 1; i >= 0; i--) _rfact[i] = _rfact[i + 1] * (i + 1); for(int i = 1; i <= sz; i++) _inv[i] = _rfact[i] * _fact[i - 1]; } inline T fact(int k) const { return _fact[k]; } inline T rfact(int k) const { return _rfact[k]; } inline T inv(int k) const { return _inv[k]; } T P(int n, int r) const { if(r < 0 || n < r) return 0; return fact(n) * rfact(n - r); } T C(int p, int q) const { if(q < 0 || p < q) return 0; return fact(p) * rfact(q) * rfact(p - q); } T H(int n, int r) const { if(n < 0 || r < 0) return (0); return r == 0 ? 1 : C(n + r - 1, r); } }; ll modpow(ll x, ll n, ll mod) { ll res = 1; x %= mod; if(x == 0) return 0; while(n) { if(n&1) res = (res * x) % mod; x = (x * x) % mod; n >>= 1; } return res; } inline long long mod(long long a, long long m) { return (a % m + m) % m; } template<typename T> struct BIT{ int N; std::vector<T> node; BIT(){} BIT(int n){ N = n; node.resize(N+10); } void build(int n) { N = n; node.resize(N+10); } /* a: 1-idxed */ void add(int a, T x){ for(int i=a; i<(int)node.size(); i += i & -i) node[i] += x; } /* [1, a] */ T sum(int a){ T res = 0; for(int x=a; x>0; x -= x & -x) res += node[x]; return res; } /* [l, r] */ T rangesum(int l, int r){ return sum(r) - sum(l-1); } /* a1+a2+...+aw >= valとなるような最小のwを返す @verify https://codeforces.com/contest/992/problem/E */ int lower_bound(T val) { if(val < 0) return 0; int res = 0; int n = 1; while (n < N) n *= 2; T tv=0; for (int k = n; k > 0; k /= 2) { if(res + k < N && node[res + k] < val){ val -= node[res+k]; res += k; } } return res+1; } }; struct UnionFind{ std::vector<int> par; std::vector<int> siz; UnionFind(int sz_): par(sz_), siz(sz_) { for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1; } void init(int sz_){ par.resize(sz_); siz.resize(sz_); for(int i=0; i<sz_; ++i) par[i] = i, siz[i] = 1; } int root(int x){ if(x == par[x]) return x; return par[x] = root(par[x]); } bool merge(int x, int y){ x = root(x), y = root(y); if(x == y) return false; if(siz[x] < siz[y]) std::swap(x, y); siz[x] += siz[y]; par[y] = x; return true; } bool issame(int x, int y){ return root(x) == root(y); } int size(int x){ return siz[root(x)]; } }; struct RollingHash{ using ull = unsigned long long; const ull mod = (1ULL << 61) - 1; const ull MASK30 = (1ULL << 30) - 1; const ull MASK31 = (1ULL << 31) - 1; const ull MASK61 = mod; ull base; int n; vector<ull> hash, pow; RollingHash(const string &s) { random_device rnd; mt19937_64 mt(rnd()); base = 1001; n = (int)s.size(); hash.assign(n+1, 0); pow.assign(n+1, 1); for(int i=0; i<n; i++){ hash[i+1] = calc_mod(mul(hash[i], base) + s[i]); pow[i+1] = calc_mod(mul(pow[i], base)); } } ull calc_mod(ull x){ ull xu = x >> 61; ull xd = x & MASK61; ull res = xu + xd; if(res >= mod) res -= mod; return res; } ull mul(ull a, ull b){ ull au = a >> 31; ull ad = a & MASK31; ull bu = b >> 31; ull bd = b & MASK31; ull mid = ad * bu + au * bd; ull midu = mid >> 30; ull midd = mid & MASK30; return calc_mod(au * bu * 2 + midu + (midd << 31) + ad * bd); } //[l,r)のハッシュ値 inline ull get(int l, int r){ ull res = calc_mod(hash[r] + mod*3-mul(hash[l], pow[r-l])); return res; } //string tのハッシュ値 inline ull get(string t){ ull res = 0; for(int i=0; i<t.size(); i++){ res = calc_mod(mul(res, base)+t[i]); } return res; } //string s中のtの数をカウント inline int count(string t) { if(t.size() > n) return 0; auto hs = get(t); int res = 0; for(int i=0; i<n-t.size()+1; i++){ if(get(i, i+t.size()) == hs) res++; } return res; } /* concat @verify https://codeforces.com/problemset/problem/514/C */ inline ull concat(ull h1, ull h2, int h2len){ return calc_mod(h2 + mul(h1, pow[h2len])); } // LCPを求める S[a:] T[b:] inline int LCP(int a, int b){ int len = min((int)hash.size()-a, (int)hash.size()-b); int lb = -1, ub = len; while(ub-lb>1){ int mid = (lb+ub)/2; if(get(a, a+mid) == get(b, b+mid)) lb = mid; else ub = mid; } return lb; } }; template<typename T> struct Matrix{ int row, col; std::vector<std::vector<T>> A; Matrix() { row = col = 1; } Matrix(int h, int w, T val = 0) : row(h), col(w), A(row, std::vector<T>(col, val)){} Matrix(const std::vector<std::vector<T>> &v) : row(v.size()), col(v[0].size()), A(v){} int GetRow() const { return row; } int GetCol() const { return col; } const std::vector<T>& operator[](int i) const { return A[i]; } std::vector<T>& operator[](int i) { return A[i]; } Matrix E(int n) { Matrix M(n, n); for(int i=0; i<n; i++) M[i][i] = 1; return M; } Matrix& operator+=(const Matrix& B) { int n = GetRow(), m = GetCol(); assert(n == B.size()); assert(m == B[0].size()); Matrix C(n, m); for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { C[i][j] = A[i][j] + B[i][j]; } } return *this = C; } Matrix& operator-=(const Matrix& B) { int n = GetRow(), m = GetCol(); assert(n == B.size()); assert(m == B[0].size()); Matrix C(n, m); for(int i=0; i<n; i++) { for(int j=0; j<m; j++) { C[i][j] = A[i][j] - B[i][j]; } } return *this = C; } Matrix& operator*=(const Matrix& B) { int k = GetRow(), l = GetCol(), n = B.GetRow(), m = GetCol(); assert(l == n); Matrix C(k, m); for(int i=0; i<k; i++) { for(int j=0; j<m; j++) { for(int k=0; k<n; k++) { C[i][j] += A[i][k] * B[k][j]; } } } return *this = C; } Matrix& operator^=(long long n) { Matrix B = Matrix::E(GetRow()); while(n > 0) { if(n&1) B = B * (*this); *this = (*this) * (*this); n >>= 1; } return *this = B; } Matrix operator+(const Matrix& B){ return Matrix(*this) += B; } Matrix operator-(const Matrix& B){ return Matrix(*this) -= B; } Matrix operator*(const Matrix& B){ return Matrix(*this) *= B; } Matrix operator^(long long n){ return Matrix(*this) ^= n; } friend std::ostream& operator<< (std::ostream& os, const Matrix& m) { for(int i=0; i<m.GetRow(); i++) { for(int j=0; j<m.GetCol(); j++) { if(j != 0) os << ' '; os << m.A[i][j]; } os << '\n'; } return os; } }; int dxy[5]={-1,0,1,0,-1}; int main() { cin.tie(0); ios::sync_with_stdio(false); cout << fixed << setprecision(12); int R, C, T; cin >> R >> C >> T; int sy, sx, gy, gx; cin >> sy >> sx >> gy >> gx; Matrix<double> m(R*C, R*C); vector<string> f(R); REP(i,R) cin >> f[i]; REP(i,R) { REP(j,C) { if(f[i][j] == '#') continue; int cnt = 0; REP(k,4) { int ny = i + dxy[k], nx = j + dxy[k+1]; if(ny >= 0 && ny < R && nx >= 0 && nx < C && f[ny][nx] == '.') cnt++; } if(cnt == 0) { m[i*C+j][i*C+j] = 1.0; }else{ REP(k,4) { int ny = i + dxy[k], nx = j + dxy[k+1]; if(ny >= 0 && ny < R && nx >= 0 && nx < C && f[ny][nx] == '.') { m[ny*C+nx][i*C+j] = 1.0/cnt; } } } } } m ^= T; cout << m[gy*C+gx][sy*C+sx] << endl; return 0; }