結果
問題 | No.1744 Selfish Spies 1 (à la Princess' Perfectionism) |
ユーザー | tokusakurai |
提出日時 | 2021-11-14 21:36:34 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,941 bytes |
コンパイル時間 | 2,886 ms |
コンパイル使用メモリ | 223,912 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-11-30 06:44:29 |
合計ジャッジ時間 | 5,203 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | RE | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | RE | - |
testcase_14 | WA | - |
testcase_15 | RE | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | RE | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | RE | - |
testcase_24 | WA | - |
testcase_25 | RE | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | WA | - |
testcase_36 | WA | - |
testcase_37 | WA | - |
testcase_38 | WA | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < n; i++) #define rep2(i, x, n) for (int i = x; i <= n; i++) #define rep3(i, x, n) for (int i = x; i >= n; i--) #define each(e, v) for (auto &e : v) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; template <typename T> bool chmax(T &x, const T &y) { return (x < y) ? (x = y, true) : false; } template <typename T> bool chmin(T &x, const T &y) { return (x > y) ? (x = y, true) : false; } template <typename T> int flg(T x, int i) { return (x >> i) & 1; } template <typename T> void print(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' '); if (v.empty()) cout << '\n'; } template <typename T> void printn(const vector<T> &v, T x = 0) { int n = v.size(); for (int i = 0; i < n; i++) cout << v[i] + x << '\n'; } template <typename T> int lb(const vector<T> &v, T x) { return lower_bound(begin(v), end(v), x) - begin(v); } template <typename T> int ub(const vector<T> &v, T x) { return upper_bound(begin(v), end(v), x) - begin(v); } template <typename T> void rearrange(vector<T> &v) { sort(begin(v), end(v)); v.erase(unique(begin(v), end(v)), end(v)); } template <typename T> vector<int> id_sort(const vector<T> &v, bool greater = false) { int n = v.size(); vector<int> ret(n); iota(begin(ret), end(ret), 0); sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; }); return ret; } template <typename S, typename T> pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first + q.first, p.second + q.second); } template <typename S, typename T> pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) { return make_pair(p.first - q.first, p.second - q.second); } template <typename S, typename T> istream &operator>>(istream &is, pair<S, T> &p) { S a; T b; is >> a >> b; p = make_pair(a, b); return is; } template <typename S, typename T> ostream &operator<<(ostream &os, const pair<S, T> &p) { return os << p.first << ' ' << p.second; } struct io_setup { io_setup() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; const int inf = (1 << 30) - 1; const ll INF = (1LL << 60) - 1; const int MOD = 1000000007; // const int MOD = 998244353; struct Bipartite_Matching { vector<vector<int>> es; vector<int> d, match; vector<bool> used, used2; const int n, m; Bipartite_Matching(int n, int m) : es(n), d(n), match(m), used(n), used2(n), n(n), m(m) {} void add_edge(int u, int v) { es[u].push_back(v); } void _bfs() { fill(begin(d), end(d), -1); queue<int> que; for (int i = 0; i < n; i++) { if (!used[i]) { que.push(i); d[i] = 0; } } while (!que.empty()) { int i = que.front(); que.pop(); for (auto &e : es[i]) { int j = match[e]; if (j != -1 && d[j] == -1) { que.push(j); d[j] = d[i] + 1; } } } } bool _dfs(int now) { used2[now] = true; for (auto &e : es[now]) { int u = match[e]; if (u == -1 || (!used2[u] && d[u] == d[now] + 1 && _dfs(u))) { match[e] = now, used[now] = true; return true; } } return false; } int bipartite_matching() { // 右側のiは左側のmatch[i]とマッチングする fill(begin(match), end(match), -1), fill(begin(used), end(used), false); int ret = 0; while (true) { _bfs(); fill(begin(used2), end(used2), false); int flow = 0; for (int i = 0; i < n; i++) { if (!used[i] && _dfs(i)) flow++; } if (flow == 0) break; ret += flow; } return ret; } }; struct Dulmage_Mendelsohn_Decomposition : Bipartite_Matching { using BM = Bipartite_Matching; vector<vector<int>> rs; vector<vector<int>> ids_l, ids_r; // 左側と右側のブロック vector<int> comp_l, comp_r; // 属するブロックの番号 vector<int> vs; Dulmage_Mendelsohn_Decomposition(int n, int m) : BM(n, m), rs(n), comp_l(n), comp_r(n) {} void _dfs(int now, int col) { if (comp_l[now] != n + 1) return; comp_l[now] = col; for (auto &e : this->es[now]) { int to = this->match[e]; if (to != -1) _dfs(to, col); } if (col > 0) vs.push_back(now); } void _rdfs(int now, int col) { if (comp_l[now] != n + 1) return; comp_l[now] = col; for (auto &e : rs[now]) _rdfs(e, col); } void decompose() { this->bipartite_matching(); for (int i = 0; i < n; i++) { for (auto &e : this->es[i]) { int to = this->match[e]; if (to != -1) rs[to].push_back(i); } } fill(begin(comp_l), end(comp_l), n + 1); for (int i = 0; i < n; i++) { bool flag = true; for (auto &e : es[i]) { if (this->match[e] == -1) { _rdfs(i, 0); flag = false; } else if (this->match[e] == i) { flag = false; } } if (flag) _dfs(i, -1); } for (int i = 0; i < n; i++) _dfs(i, 1); for (int i = 0; i < n; i++) { if (comp_l[i] > 0) comp_l[i] = n + 1; } reverse(begin(vs), end(vs)); int cnt = 1; for (auto &e : vs) { if (comp_l[e] == n + 1) _rdfs(e, cnt++); } for (int i = 0; i < n; i++) { if (comp_l[i] == -1) comp_l[i] = cnt; } for (int i = 0; i < m; i++) { if (this->match[i] == -1) { comp_r[i] = 0; } else { comp_r[i] = comp_l[this->match[i]]; } } ids_l.resize(cnt + 1), ids_r.resize(cnt + 1); for (int i = 0; i < m; i++) { if (this->match[i] == -1) ids_r[0].push_back(i); } vector<bool> used(n, false); for (int i = 0; i < m; i++) { int e = this->match[i]; if (e != -1) { ids_l[comp_l[e]].push_back(e); ids_r[comp_r[i]].push_back(i); used[e] = true; } } for (int i = 0; i < n; i++) { if (!used[i]) ids_l[cnt].push_back(i); } } }; int main() { int N, M, L; cin >> N >> M >> L; Dulmage_Mendelsohn_Decomposition DM(N, M); vector<int> u(L), v(L); rep(i, L) { cin >> u[i] >> v[i]; u[i]--, v[i]--; DM.add_edge(u[i], v[i]); } DM.decompose(); int K = sz(DM.ids_l); cout << K << '\n'; print(DM.comp_l), print(DM.comp_r); vector<int> d1(N, 0), d2(M, 0); rep(i, L) { if (DM.comp_r[v[i]] == 0) d1[u[i]]++; if (DM.comp_l[u[i]] == K - 1) d2[v[i]]++; } vector<bool> ans(L, true); rep(i, L) { if (DM.comp_r[v[i]] == 0) { if (d1[u[i]] == 1) ans[i] = false; } else if (DM.comp_l[u[i]] == K - 1) { if (d2[v[i]] == 1) ans[i] = false; } else if (sz(DM.ids_l[DM.comp_l[u[i]]]) == 1) { if (DM.comp_l[u[i]] == DM.comp_r[v[i]]) ans[i] = false; } } rep(i, L) cout << (ans[i] ? "Yes\n" : "No\n"); }