結果
問題 | No.1745 Selfish Spies 2 (à la Princess' Perfectionism) |
ユーザー | koba-e964 |
提出日時 | 2021-11-14 23:34:39 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 922 ms / 5,000 ms |
コード長 | 10,191 bytes |
コンパイル時間 | 19,609 ms |
コンパイル使用メモリ | 379,284 KB |
実行使用メモリ | 100,824 KB |
最終ジャッジ日時 | 2024-05-07 15:44:50 |
合計ジャッジ時間 | 24,809 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 1 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 1 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 1 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 3 ms
5,376 KB |
testcase_18 | AC | 4 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 1 ms
5,376 KB |
testcase_21 | AC | 1 ms
5,376 KB |
testcase_22 | AC | 1 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 10 ms
5,376 KB |
testcase_25 | AC | 3 ms
5,376 KB |
testcase_26 | AC | 3 ms
5,376 KB |
testcase_27 | AC | 6 ms
5,376 KB |
testcase_28 | AC | 47 ms
16,384 KB |
testcase_29 | AC | 5 ms
5,376 KB |
testcase_30 | AC | 5 ms
5,376 KB |
testcase_31 | AC | 5 ms
5,376 KB |
testcase_32 | AC | 4 ms
5,376 KB |
testcase_33 | AC | 44 ms
16,512 KB |
testcase_34 | AC | 40 ms
16,384 KB |
testcase_35 | AC | 48 ms
15,872 KB |
testcase_36 | AC | 52 ms
16,000 KB |
testcase_37 | AC | 50 ms
15,744 KB |
testcase_38 | AC | 42 ms
15,872 KB |
testcase_39 | AC | 32 ms
8,300 KB |
testcase_40 | AC | 40 ms
12,480 KB |
testcase_41 | AC | 39 ms
12,492 KB |
testcase_42 | AC | 92 ms
22,868 KB |
testcase_43 | AC | 130 ms
30,912 KB |
testcase_44 | AC | 195 ms
39,904 KB |
testcase_45 | AC | 630 ms
65,340 KB |
testcase_46 | AC | 694 ms
65,336 KB |
testcase_47 | AC | 920 ms
98,008 KB |
testcase_48 | AC | 922 ms
97,972 KB |
testcase_49 | AC | 234 ms
30,720 KB |
testcase_50 | AC | 214 ms
30,956 KB |
testcase_51 | AC | 72 ms
12,160 KB |
testcase_52 | AC | 59 ms
19,028 KB |
testcase_53 | AC | 77 ms
18,772 KB |
testcase_54 | AC | 203 ms
40,484 KB |
testcase_55 | AC | 190 ms
40,768 KB |
testcase_56 | AC | 498 ms
42,000 KB |
testcase_57 | AC | 764 ms
100,824 KB |
testcase_58 | AC | 831 ms
100,812 KB |
ソースコード
use std::collections::*; use std::io::{Write, BufWriter}; // https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, usize1) => (read_value!($next, usize) - 1); ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /** * Dinic's algorithm for maximum flow problem. * Verified by: yukicoder No.177 (http://yukicoder.me/submissions/148371) * Min-cut (the second element of max_flow's returned values) is not verified. */ #[derive(Clone)] struct Edge<T> { to: usize, cap: T, rev: usize, // rev is the position of the reverse edge in graph[to] } struct Dinic<T> { graph: Vec<Vec<Edge<T>>>, iter: Vec<usize>, zero: T, } impl<T> Dinic<T> where T: Clone, T: Copy, T: Ord, T: std::ops::AddAssign, T: std::ops::SubAssign, { fn bfs(&self, s: usize, level: &mut [Option<usize>]) { let n = level.len(); for i in 0 .. n { level[i] = None; } let mut que = std::collections::VecDeque::new(); level[s] = Some(0); que.push_back(s); while let Some(v) = que.pop_front() { for e in self.graph[v].iter() { if e.cap > self.zero && level[e.to] == None { level[e.to] = Some(level[v].unwrap() + 1); que.push_back(e.to); } } } } /* search augment path by dfs. * if f == None, f is treated as infinity. */ fn dfs(&mut self, v: usize, t: usize, f: Option<T>, level: &mut [Option<usize>]) -> T { if v == t { return f.unwrap(); } while self.iter[v] < self.graph[v].len() { let i = self.iter[v]; let e = self.graph[v][i].clone(); if e.cap > self.zero && level[v] < level[e.to] { let newf = std::cmp::min(f.unwrap_or(e.cap), e.cap); let d = self.dfs(e.to, t, Some(newf), level); if d > self.zero { self.graph[v][i].cap -= d; self.graph[e.to][e.rev].cap += d; return d; } } self.iter[v] += 1; } self.zero } pub fn new(n: usize, zero: T) -> Self { Dinic { graph: vec![Vec::new(); n], iter: vec![0; n], zero: zero, } } pub fn add_edge(&mut self, from: usize, to: usize, cap: T) { let added_from = Edge { to: to, cap: cap, rev: self.graph[to].len() }; let added_to = Edge { to: from, cap: self.zero, rev: self.graph[from].len() }; self.graph[from].push(added_from); self.graph[to].push(added_to); } pub fn max_flow(&mut self, s: usize, t: usize) -> (T, Vec<usize>) { let mut flow = self.zero; let n = self.graph.len(); let mut level = vec![None; n]; loop { self.bfs(s, &mut level); if level[t] == None { let ret = (0 .. n).filter(|&i| level[i] == None) .collect(); return (flow, ret); } self.iter.clear(); self.iter.resize(n, 0); loop { let f = self.dfs(s, t, None, &mut level); if f <= self.zero { break; } flow += f; } } } } // Strong connected components. // Verified by: yukicoder No.470 (http://yukicoder.me/submissions/145785) // ABC214-H (https://atcoder.jp/contests/abc214/submissions/25082618) struct SCC { n: usize, ncc: usize, g: Vec<Vec<usize>>, // graph in adjacent list rg: Vec<Vec<usize>>, // reverse graph cmp: Vec<usize>, // topological order } impl SCC { fn new(n: usize) -> Self { SCC { n: n, ncc: n + 1, g: vec![Vec::new(); n], rg: vec![Vec::new(); n], cmp: vec![0; n], } } fn add_edge(&mut self, from: usize, to: usize) { self.g[from].push(to); self.rg[to].push(from); } fn dfs(&self, v: usize, used: &mut [bool], vs: &mut Vec<usize>) { used[v] = true; for &w in self.g[v].iter() { if !used[w] { self.dfs(w, used, vs); } } vs.push(v); } fn rdfs(&self, v: usize, k: usize, used: &mut [bool], cmp: &mut [usize]) { used[v] = true; cmp[v] = k; for &w in self.rg[v].iter() { if !used[w] { self.rdfs(w, k, used, cmp); } } } fn scc(&mut self) -> usize { let n = self.n; let mut used = vec![false; n]; let mut vs = Vec::new(); let mut cmp = vec![0; n]; for v in 0 .. n { if !used[v] { self.dfs(v, &mut used, &mut vs); } } for u in used.iter_mut() { *u = false; } let mut k = 0; for &t in vs.iter().rev() { if !used[t] { self.rdfs(t, k, &mut used, &mut cmp); k += 1; } } self.ncc = k; self.cmp = cmp; k } #[allow(dead_code)] fn top_order(&self) -> Vec<usize> { assert!(self.ncc <= self.n); self.cmp.clone() } /* * Returns a dag whose vertices are scc's, and whose edges are those of the original graph. */ #[allow(dead_code)] fn dag(&self) -> Vec<Vec<usize>> { assert!(self.ncc <= self.n); let ncc = self.ncc; let mut ret = vec![vec![]; ncc]; let n = self.n; for i in 0 .. n { for &to in self.g[i].iter() { if self.cmp[i] != self.cmp[to] { assert!(self.cmp[i] < self.cmp[to]); ret[self.cmp[i]].push(self.cmp[to]); } } } ret.into_iter().map(|mut v| { v.sort_unstable(); v.dedup(); v }).collect() } #[allow(dead_code)] fn rdag(&self) -> Vec<Vec<usize>> { assert!(self.ncc <= self.n); let ncc = self.ncc; let mut ret = vec![vec![]; ncc]; let n = self.n; for i in 0 .. n { for &to in self.g[i].iter() { if self.cmp[i] != self.cmp[to] { assert!(self.cmp[i] < self.cmp[to]); ret[self.cmp[to]].push(self.cmp[i]); } } } ret.into_iter().map(|mut v| { v.sort_unstable(); v.dedup(); v }).collect() } } fn main() { // In order to avoid potential stack overflow, spawn a new thread. let stack_size = 104_857_600; // 100 MB let thd = std::thread::Builder::new().stack_size(stack_size); thd.spawn(|| solve()).unwrap().join().unwrap(); } fn reach(init: &[usize], g: &[Vec<usize>], mid: usize) -> (Vec<usize>, Vec<usize>) { let n = g.len(); let mut que = init.iter().cloned().collect::<VecDeque<_>>(); let mut vis = vec![false; n]; while let Some(v) = que.pop_front() { if vis[v] { continue; } vis[v] = true; for &w in &g[v] { if !vis[w] { que.push_back(w); } } } let fst = (0..mid).filter(|&i| vis[i]).collect(); let snd = (mid..n).filter(|&i| vis[i]).collect(); (fst, snd) } // Tags: dulmage–mendelsohn-decomposition, dm-decomposition, matchings // Ref: http://www.misojiro.t.u-tokyo.ac.jp/~murota/lect-ouyousurigaku/dm050410.pdf fn solve() { let out = std::io::stdout(); let mut out = BufWriter::new(out.lock()); macro_rules! puts {($($format:tt)*) => (let _ = write!(out,$($format)*););} input! { n: usize, m: usize, l: usize, ab: [(usize1, usize1); l], } let mut din = Dinic::new(2 + n + m, 0); for i in 0..n { din.add_edge(0, 2 + i, 1); } for i in 0..m { din.add_edge(2 + n + i, 1, 1); } for &(a, b) in &ab { din.add_edge(2 + a, 2 + n + b, 1); } let _ = din.max_flow(0, 1); let mut g = vec![vec![]; n + m]; let mut revg = vec![vec![]; n + m]; let mut scc = SCC::new(n + m); for &(a, b) in &ab { scc.add_edge(a, n + b); g[a].push(n + b); revg[n + b].push(a); } let mut unmatched = vec![true; n + m]; let mut mm = vec![]; for i in 0..m { for e in &din.graph[2 + n + i] { if e.to >= 2 && e.cap == 1 { scc.add_edge(n + i, e.to - 2); mm.push((e.to - 2, i)); unmatched[e.to - 2] = false; unmatched[n + i] = false; g[n + i].push(e.to - 2); revg[e.to - 2].push(n + i); } } } let ncc = scc.scc(); let mut top_ord = scc.top_order(); let left: Vec<_> = (0..n).filter(|&i| unmatched[i]).collect(); let (v0a, v0b) = reach(&left, &g, n); let right: Vec<_> = (n..n + m).filter(|&i| unmatched[i]).collect(); let (vinfa, vinfb) = reach(&right, &revg, n); for &v in v0a.iter().chain(&v0b) { top_ord[v] = ncc; } for &v in vinfa.iter().chain(&vinfb) { top_ord[v] = ncc + 1; } for i in 0..l { let (a, b) = ab[i]; puts!("{}\n", if top_ord[a] == top_ord[n + b] { "Yes" } else { "No" }); } }