結果

問題 No.1744 Selfish Spies 1 (à la Princess' Perfectionism)
ユーザー KowerKoint2010KowerKoint2010
提出日時 2021-11-16 22:28:51
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 18,254 bytes
コンパイル時間 2,925 ms
コンパイル使用メモリ 237,808 KB
実行使用メモリ 14,828 KB
最終ジャッジ日時 2024-05-10 06:37:36
合計ジャッジ時間 5,206 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 1 ms
5,376 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 AC 2 ms
5,376 KB
testcase_21 AC 2 ms
5,376 KB
testcase_22 WA -
testcase_23 WA -
testcase_24 AC 10 ms
5,528 KB
testcase_25 AC 4 ms
5,376 KB
testcase_26 WA -
testcase_27 WA -
testcase_28 AC 49 ms
14,828 KB
testcase_29 AC 6 ms
5,376 KB
testcase_30 AC 5 ms
5,376 KB
testcase_31 AC 5 ms
5,376 KB
testcase_32 AC 5 ms
5,376 KB
testcase_33 AC 46 ms
13,560 KB
testcase_34 AC 43 ms
13,192 KB
testcase_35 AC 50 ms
14,564 KB
testcase_36 AC 47 ms
14,816 KB
testcase_37 AC 45 ms
13,668 KB
testcase_38 AC 43 ms
12,948 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 1 "Contests/yukicoder_/6654/main.cpp"
/* #define aclmodint */
/* #define aclsegtree */
/* #include <atcoder/all> */
/* using namespace atcoder; */

#line 1 "library/atcoder/maxflow.hpp"



#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>

#line 1 "library/atcoder/internal_queue.hpp"



#line 5 "library/atcoder/internal_queue.hpp"

namespace atcoder {

namespace internal {

template <class T> struct simple_queue {
    std::vector<T> payload;
    int pos = 0;
    void reserve(int n) { payload.reserve(n); }
    int size() const { return int(payload.size()) - pos; }
    bool empty() const { return pos == int(payload.size()); }
    void push(const T& t) { payload.push_back(t); }
    T& front() { return payload[pos]; }
    void clear() {
        payload.clear();
        pos = 0;
    }
    void pop() { pos++; }
};

}  // namespace internal

}  // namespace atcoder


#line 11 "library/atcoder/maxflow.hpp"

namespace atcoder {

template <class Cap> struct mf_graph {
  public:
    mf_graph() : _n(0) {}
    explicit mf_graph(int n) : _n(n), g(n) {}

    int add_edge(int from, int to, Cap cap) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        assert(0 <= cap);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        int from_id = int(g[from].size());
        int to_id = int(g[to].size());
        if (from == to) to_id++;
        g[from].push_back(_edge{to, to_id, cap});
        g[to].push_back(_edge{from, from_id, 0});
        return m;
    }

    struct edge {
        int from, to;
        Cap cap, flow;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result;
        for (int i = 0; i < m; i++) {
            result.push_back(get_edge(i));
        }
        return result;
    }
    void change_edge(int i, Cap new_cap, Cap new_flow) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        assert(0 <= new_flow && new_flow <= new_cap);
        auto& _e = g[pos[i].first][pos[i].second];
        auto& _re = g[_e.to][_e.rev];
        _e.cap = new_cap - new_flow;
        _re.cap = new_flow;
    }

    Cap flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    Cap flow(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);

        std::vector<int> level(_n), iter(_n);
        internal::simple_queue<int> que;

        auto bfs = [&]() {
            std::fill(level.begin(), level.end(), -1);
            level[s] = 0;
            que.clear();
            que.push(s);
            while (!que.empty()) {
                int v = que.front();
                que.pop();
                for (auto e : g[v]) {
                    if (e.cap == 0 || level[e.to] >= 0) continue;
                    level[e.to] = level[v] + 1;
                    if (e.to == t) return;
                    que.push(e.to);
                }
            }
        };
        auto dfs = [&](auto self, int v, Cap up) {
            if (v == s) return up;
            Cap res = 0;
            int level_v = level[v];
            for (int& i = iter[v]; i < int(g[v].size()); i++) {
                _edge& e = g[v][i];
                if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
                Cap d =
                    self(self, e.to, std::min(up - res, g[e.to][e.rev].cap));
                if (d <= 0) continue;
                g[v][i].cap += d;
                g[e.to][e.rev].cap -= d;
                res += d;
                if (res == up) return res;
            }
            level[v] = _n;
            return res;
        };

        Cap flow = 0;
        while (flow < flow_limit) {
            bfs();
            if (level[t] == -1) break;
            std::fill(iter.begin(), iter.end(), 0);
            Cap f = dfs(dfs, t, flow_limit - flow);
            if (!f) break;
            flow += f;
        }
        return flow;
    }

    std::vector<bool> min_cut(int s) {
        std::vector<bool> visited(_n);
        internal::simple_queue<int> que;
        que.push(s);
        while (!que.empty()) {
            int p = que.front();
            que.pop();
            visited[p] = true;
            for (auto e : g[p]) {
                if (e.cap && !visited[e.to]) {
                    visited[e.to] = true;
                    que.push(e.to);
                }
            }
        }
        return visited;
    }

  private:
    int _n;
    struct _edge {
        int to, rev;
        Cap cap;
    };
    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

}  // namespace atcoder


#line 1 "library/atcoder/dsu.hpp"



#line 7 "library/atcoder/dsu.hpp"

namespace atcoder {

// Implement (union by size) + (path compression)
// Reference:
// Zvi Galil and Giuseppe F. Italiano,
// Data structures and algorithms for disjoint set union problems
struct dsu {
  public:
    dsu() : _n(0) {}
    explicit dsu(int n) : _n(n), parent_or_size(n, -1) {}

    int merge(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        int x = leader(a), y = leader(b);
        if (x == y) return x;
        if (-parent_or_size[x] < -parent_or_size[y]) std::swap(x, y);
        parent_or_size[x] += parent_or_size[y];
        parent_or_size[y] = x;
        return x;
    }

    bool same(int a, int b) {
        assert(0 <= a && a < _n);
        assert(0 <= b && b < _n);
        return leader(a) == leader(b);
    }

    int leader(int a) {
        assert(0 <= a && a < _n);
        if (parent_or_size[a] < 0) return a;
        return parent_or_size[a] = leader(parent_or_size[a]);
    }

    int size(int a) {
        assert(0 <= a && a < _n);
        return -parent_or_size[leader(a)];
    }

    std::vector<std::vector<int>> groups() {
        std::vector<int> leader_buf(_n), group_size(_n);
        for (int i = 0; i < _n; i++) {
            leader_buf[i] = leader(i);
            group_size[leader_buf[i]]++;
        }
        std::vector<std::vector<int>> result(_n);
        for (int i = 0; i < _n; i++) {
            result[i].reserve(group_size[i]);
        }
        for (int i = 0; i < _n; i++) {
            result[leader_buf[i]].push_back(i);
        }
        result.erase(
            std::remove_if(result.begin(), result.end(),
                           [&](const std::vector<int>& v) { return v.empty(); }),
            result.end());
        return result;
    }

  private:
    int _n;
    // root node: -1 * component size
    // otherwise: parent
    std::vector<int> parent_or_size;
};

}  // namespace atcoder


#line 8 "Contests/yukicoder_/6654/main.cpp"
using namespace atcoder;

#line 1 "library/me/template.cpp"
#include <bits/stdc++.h>
using namespace std;

#define REP(a,b) for(int a = 0;a < (int)(b);++a)
#define FOR(i,a,b) for(ll i = a; i < (ll)(b); i++)
#define ALL(a) (a).begin(),(a).end()
#define END(a) { print(a); return; }
#define DBG(a) { cerr << #a << ": "; dbg(a); }
using VI = vector<int>;
using VVI = vector<VI>;
using VVVI = vector<VVI>;
using ll = long long;
using VL = vector<ll>;
using VVL = vector<VL>;
using VVVL = vector<VVL>;
using VD = vector<double>;
using VVD = vector<VD>;
using VVVD = vector<VVD>;
using VS = vector<string>;
using VVS = vector<VS>;
using VVVS = vector<VVS>;
using VC = vector<char>;
using VVC = vector<VC>;
using VVVC = vector<VVC>;
using P = pair<int, int>;
using VP = vector<P>;
using VVP = vector<VP>;
using VVVP = vector<VVP>;
using LP = pair<ll, ll>;
using VLP = vector<LP>;
using VVLP = vector<VLP>;
using VVVLP = vector<VVLP>;
constexpr int INF = 1001001001;
constexpr ll LINF = 1001001001001001001ll;
constexpr int DX[] = {1, 0, -1, 0};
constexpr int DY[] = {0, 1, 0, -1};

#ifdef aclmodint

using MI7 = modint1000000007;
using V7 = vector<MI7>;
using VV7 = vector<V7>;
using VVV7 = vector<VV7>;
using MI3 = modint998244353;
using V3 = vector<MI3>;
using VV3 = vector<V3>;
using VVV3 = vector<VV3>;

ostream &operator<<(ostream &os, const modint &x) {
    os << x.val();
    return os;
}

ostream &operator<<(ostream &os, const MI3 &x) {
    os << x.val();
    return os;
}

ostream &operator<<(ostream &os, const MI7 &x) {
    os << x.val();
    return os;
}

istream &operator>>(istream &is, modint &x) {
    int y; is >> y;
    x = y;
    return is;
}

istream &operator>>(istream &is, MI3 &x) {
    int y; is >> y;
    x = y;
    return is;
}

istream &operator>>(istream &is, MI7 &x) {
    int y; is >> y;
    x = y;
    return is;
}

#endif

void print() { cout << '\n'; }
template<class T>
void print(const T &t) { cout << t << '\n'; }
template<class Head, class... Tail>
void print(const Head &head, const Tail &... tail) {
    cout << head << ' ';
    print(tail...);
}

void dbg() { cout << '\n'; }
template<class T>
void dbg(const T &t) { cerr << t << '\n'; }
template<class Head, class... Tail>
void dbg(const Head &head, const Tail &... tail) {
    cerr << head << ' ';
    dbg(tail...);
}

template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 >& p) {
    os << p.first << " " << p.second;
    return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
    is >> p.first >> p.second;
    return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
    for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != (int) v.size() ? " " : "");
    }
    return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
    for(T &in : v) is >> in;
    return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template <typename T>
pair<VI, vector<T>> compress(const vector<T> &a) {
    int n = a.size();
    vector<T> x;
    REP(i, n) x.push_back(i);
    sort(ALL(x)); x.erase(unique(ALL(x)), x.end());
    VI res(n);
    REP(i, n) res[i] = lower_bound(ALL(x), a);
    return make_pair(res, x);
}

#ifdef aclsegtree
template<typename S>
struct value_size { S value; int size; };

template<typename S>
S min_op(S l, S r) { return min(l, r); };
template<typename S>
S max_op(S l, S r) { return max(l, r); };
template<typename S>
S sum_op(S l, S r) { return l + r; };
template<typename S>
value_size<S> sum_op_size(value_size<S> l, value_size<S> r) {
    return {l.value + r.value, l.size + r.size};
};
template<typename S>
value_size<S> min_op_size(value_size<S> l, value_size<S> r) {
    return {min(l.value, r.value), l.size + r.size};
};
template<typename S>
value_size<S> max_op_size(value_size<S> l, value_size<S> r) {
    return {max(l.value, r.value), l.size + r.size};
};

template<typename S>
S min_e() { return  numeric_limits<S>::max(); };
template<typename S>
S max_e() { return numeric_limits<S>::min(); };
template<typename S>
S sum_e() { return 0; }
template<typename S>
value_size<S> sum_e_size() { return {0, 0}; }
template<typename S>
value_size<S> min_e_size() { return {numeric_limits<S>::max(), 0}; }
template<typename S>
value_size<S> max_e_size() { return {numeric_limits<S>::min(), 0}; }

template<typename S, typename F>
S chmin_mapping(F f, S x) { return min(x, f); }
template<typename S, typename F>
S chmax_mapping(F f, S x) { return max(x, f); }
template<typename S, typename F>
S add_mapping(F f, S x) { return x + f; }
template<typename S, typename F>
value_size<S> add_mapping_size(F f, value_size<S> x) {
    return {x.value + x.size * f, x.size};
}

template<typename F>
F chmin_composition(F f, F g) { return min(f, g); }
template<typename F>
F chmax_composition(F f, F g) { return max(f, g); }
template<typename F>
F add_composition(F f, F g) { return f + g; }

template<typename F>
F chmin_id() { return numeric_limits<F>::max(); }
template<typename F>
F chmax_id() { return numeric_limits<F>::min(); }
template<typename F>
F add_id() { return 0; }

template<typename S>
using RSumQ = segtree<S, sum_op<S>, sum_e<S>>;
template<typename S>
using RMaxQ = segtree<S, max_op<S>, max_e<S>>;
template<typename S>
using RMinQ = segtree<S, min_op<S>, min_e<S>>;

template<typename S, typename F>
using RAddSumQ = lazy_segtree<value_size<S>, sum_op_size<S>, sum_e_size<S>,
    F, add_mapping_size<S, F>, add_composition<F>, add_id<F>>;
template<typename S, typename F>
using RAddMinQ = lazy_segtree<S, min_op<S>, min_e<S>,
    F, add_mapping<S, F>, add_composition<F>, add_id<F>>;
template<typename S, typename F>
using RAddMaxQ = lazy_segtree<S, max_op<S>, max_e<S>,
    F, add_mapping<S, F>, add_composition<F>, add_id<F>>;
template<typename S, typename F>
using RMinMinQ = lazy_segtree<S, min_op<S>, min_e<S>,
    F, chmin_mapping<S, F>, chmin_composition<F>, chmin_id<F>>;
template<typename S, typename F>
using RMaxMaxQ = lazy_segtree<S, max_op<S>, max_e<S>,
    F, chmax_mapping<S, F>, chmax_composition<F>, chmax_id<F>>;
#endif
#line 2 "library/ei1333/graph/connected-components/strongly-connected-components.hpp"

#line 2 "library/ei1333/graph/graph-template.hpp"

/**
 * @brief Graph Template(グラフテンプレート)
 */
template< typename T = int >
struct Edge {
  int from, to;
  T cost;
  int idx;

  Edge() = default;

  Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}

  operator int() const { return to; }
};

template< typename T = int >
struct Graph {
  vector< vector< Edge< T > > > g;
  int es;

  Graph() = default;

  explicit Graph(int n) : g(n), es(0) {}

  size_t size() const {
    return g.size();
  }

  void add_directed_edge(int from, int to, T cost = 1) {
    g[from].emplace_back(from, to, cost, es++);
  }

  void add_edge(int from, int to, T cost = 1) {
    g[from].emplace_back(from, to, cost, es);
    g[to].emplace_back(to, from, cost, es++);
  }

  void read(int M, int padding = -1, bool weighted = false, bool directed = false) {
    for(int i = 0; i < M; i++) {
      int a, b;
      cin >> a >> b;
      a += padding;
      b += padding;
      T c = T(1);
      if(weighted) cin >> c;
      if(directed) add_directed_edge(a, b, c);
      else add_edge(a, b, c);
    }
  }

  inline vector< Edge< T > > &operator[](const int &k) {
    return g[k];
  }

  inline const vector< Edge< T > > &operator[](const int &k) const {
    return g[k];
  }
};

template< typename T = int >
using Edges = vector< Edge< T > >;
#line 4 "library/ei1333/graph/connected-components/strongly-connected-components.hpp"

/**
 * @brief Strongly Connected Components(強連結成分分解)
 * @docs docs/strongly-connected-components.md
 */
template< typename T = int >
struct StronglyConnectedComponents : Graph< T > {
public:
  using Graph< T >::Graph;
  using Graph< T >::g;
  vector< int > comp;
  Graph< T > dag;
  vector< vector< int > > group;

  void build() {
    rg = Graph< T >(g.size());
    for(size_t i = 0; i < g.size(); i++) {
      for(auto &e : g[i]) {
        rg.add_directed_edge(e.to, e.from, e.cost);
      }
    }
    comp.assign(g.size(), -1);
    used.assign(g.size(), 0);
    for(size_t i = 0; i < g.size(); i++) dfs(i);
    reverse(begin(order), end(order));
    int ptr = 0;
    for(int i : order) if(comp[i] == -1) rdfs(i, ptr), ptr++;
    dag = Graph< T >(ptr);
    for(size_t i = 0; i < g.size(); i++) {
      for(auto &e : g[i]) {
        int x = comp[e.from], y = comp[e.to];
        if(x == y) continue;
        dag.add_directed_edge(x, y, e.cost);
      }
    }
    group.resize(ptr);
    for(size_t i = 0; i < g.size(); i++) {
      group[comp[i]].emplace_back(i);
    }
  }

  int operator[](int k) const {
    return comp[k];
  }

private:
  vector< int > order, used;
  Graph< T > rg;

  void dfs(int idx) {
    if(exchange(used[idx], true)) return;
    for(auto &to : g[idx]) dfs(to);
    order.push_back(idx);
  }

  void rdfs(int idx, int cnt) {
    if(comp[idx] != -1) return;
    comp[idx] = cnt;
    for(auto &to : rg.g[idx]) rdfs(to, cnt);
  }
};
#line 12 "Contests/yukicoder_/6654/main.cpp"

void solve(){
    int n, m, l; cin >> n >> m >> l;
    StronglyConnectedComponents<int> graph(n + m);
    mf_graph<int> mf(n + m + 2);
    REP(i, l) {
        int s, t; cin >> s >> t; s--; t--;
        graph.add_directed_edge(s, n + t);
        mf.add_edge(s, n + t, 1);
    }
    REP(i, n) mf.add_edge(n + m, i, 1);
    REP(i, m) mf.add_edge(n + i, n + m + 1, 1);
    mf.flow(n + m, n + m + 1);
    REP(i, l) {
        if(mf.get_edge(i).flow == 1) {
            graph.add_directed_edge(mf.get_edge(i).to, mf.get_edge(i).from);
        }
    }
    graph.build();
    dsu uni(n + m);
    for(VI &group : graph.group) {
        REP(i, (int)group.size() - 1) {
            uni.merge(group[i], group[i + 1]);
        }
    }
    REP(i, l) {
        int from = mf.get_edge(i).from;
        int to = mf.get_edge(i).to;
        if(mf.get_edge(l + from).flow == 0 || mf.get_edge(l + to).flow == 0) {
            uni.merge(from, to);
        }
    }
    VVI groups = uni.groups();
    set<int> single;
    REP(i, groups.size()) {
        //assert(groups[i].size() >= 2);
        if(groups[i].size() == 2) {
            single.insert(groups[i][0]);
            single.insert(groups[i][1]);
        }
    }
    REP(i, l) {
        if(mf.get_edge(i).flow == 0) {
            print("Yes");
            continue;
        }
        if(single.count(mf.get_edge(i).from)) print("No");
        else print("Yes");
    }
}

// generated by oj-template v4.7.2 (https://github.com/online-judge-tools/template-generator)
int main() {
    // Fasterize input/output script
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(100);
    // scanf/printf user should delete this fasterize input/output script

    int t = 1;
    //cin >> t; // comment out if solving multi testcase
    for(int testCase = 1;testCase <= t;++testCase){
        solve();
    }
    return 0;
}
0